COMMITTEE CORRESPONDENCE
s oforms . Doc. No, : 1514TS01

X3—Compuunx&lnﬁunuﬁonanmshm
X4-Offics Machines & Supplies Date : 75-02-08
Operating under the procedures of the American National Standards Institute Project 226

Milestone :
secratariat: CBEMA, 1828 L St NW (suite 1200), Washington DC 20036 202/466—2299
Reply to: T.B. Steel, Jr.
Equitable Life
Assurance Soclety
To: Recipients of SPARC/DBMS Interim Report
From: SPARC/DBMS Study Group
Subject: INTERIM REPORT
This report summarizes the activities of the Study Group since our previous report

of January 25, 1974,

Items Completed Since Last Report

We have:

1. refined the Model to segregate those interfaces for consideration toward
standardization from those not requiring immediate attention (shaded in System
Schematic #1), and introduced the Data Dictionary/Directory concept

2. defined the interactions among the components of the Model

3. analyzed the Internal-Conceptual-External architecture and the implications for
data independence

4. defined the major functions and interfaces of components

5. addressed the topics of security, integrity, recovery, and data independence
in the Model

6. examined the Model's ability to accommodate multiple view of data structuring
7. described the program preparation process

Remaining Items

The following areas remain to be addressed:

1. distributed databases

2, developing and testing data bases

3. further explanation of the full capabilities of the mapping mechanism

4., measurement and performance
5. the supportive role played by operating system functions
6. data-driven events

Additionally, we have not yet considered the potential for multiple levels of
standards, and the relationship of our activities to those of other ANSI committees.

Unresolved Issues

The committee has not reached closure on the specific nature of the interface
between an Internal level program and the database system (18).

The Interim Technical Report submitted herewith documents our current status. Although
this report represents a general consensus of the Study Group, the specific content may
not adequately express the individual views of each committee member. 1In addition, there
has been insufficient time to resolve all the inconsistencies caused by terminological and
stylistic differences. Further, there are certain topics required in the final report
which have not yet been addressed: e.g., a bibliography, a glossary and an example.

The three-level approach to modelling a database described in the Interim Report is the
most significant aspect of the proposed system Model. The framework is designed to
support Change and evolution in an interprise by providing a suitable basis for generating
and controlling mappings between the Internal and External schemas. This promotes data
independence and orderly restructuring of an enterprise's database. In particular, intro-
duction of the Conceptual Schema is seen to provide certain benefits which are worth
summarizing.

1. Preparing a Conceptual Schema causes an Enterprise to formalize its information
model. As such it is a planning exercise which establishes a fairly stable
frame of reference for installing a database management system.

2, Having established this frame of reference we have a repository for information
requirements of the business. We have the beginnings of a data dictionary/
directory for the enterprise which can be used to show where, how, and by whom
information is used.

3. Not only does the Conceptual Schema provide a central frame of reference, it
can also be a central authority for resolving security and integrity problems
which arise from entry at levels other than the External Schema level. Thus
the complete security hierarchy may be stated in the Conceptual Schema and
propagated to other schemas when they are prepared, which helps to ensure
thas security declarations in different schemas are consistent with one
another.

-3 -

Because more than one, say ff, Internal Schemas may exist within an
enterprise, the existence of n External Schemas allows m x n possible
Internal/External mappings. If we can map n External Schemas onto the
Conceptual Schema and m Internal Schemas onto the Conceptual Schema
then the number of mappings has been reduced to m + n. Of course,
there are no savings when there is only one Internal Schema (m = 1).

The Conceptual Schema can "insulate' External Schemas from changes in

the Internal Schema and vice versa, This is because each External Schema
could be mapped onto the Conceptual Schema which in turn could be mapped
onto the Internal Schema (that is, there would be no direct mappings
between External Schemas and Internal Schemas). Therefore, a change to
the Internal Schema (e.g., to restructure) need only affect the mapping
from Conceptual Schema to Internal Schema. On the other hand, if External
Schemas map directly onto the Internal Schema, a change in the Internal
Schema may affect up to n mappings. Of course, this insulation would be
optional and used at the discretion of the Enterprise Administrator.

~ T

A NSNS —
€
3

INTERIM REPORT

ANSI/X3/SPARC

Study Group on Data Base Management Systems

08

75-02

TABLE OF CONTENTS

Int

roduction

Concepts

II

System Dynamics

I1rx

Detailed Description of Interfaces

Iv:

Security

Integrity

-
-

VI

Recovery

VIX:

once the plague’s done, we're both
out of a job.”

“Qf course,

Miscellaneous Topics

VIII

STATUS RTPORT

S

SPARC/D3iS

CHAPTER I: INTRODUCTION

While the official, chartered purpose of this Study Group on Data
Base Management Systems is to investigate the potential for
standardization in the area of data base management systems, a
necessary first step of the work of the Study Group has been the
development of a set of requirements for effective data base
management systems. These requirements have emerged as the work
of the study Group proceeded and have manifested themselves in
the form of a generalized model for the description of data base
management systems. AS no existing or proposed inplementation of
a data base management system completely satisfies these
requirements nor comprises all of the concepts involved, a
necessary preliminary to any discussion of standards is an
explanation of this model. The bulk of this Report provides such
an explanation.

As a preliminary it is appropriate +to discuss briefly the
sequence of events that has led to this Report. Among the
responsibilities of +the Standards Planning and Requirements
Committee (SPARC) of the American National Standards Committee on
Computers and Information Processing (BANSI/X3) is the generation
of recommendations for action by the parent Committee on
appropriate areas for +the initiation of standard development
efforts. For some time, starting in about 1969, SPARC has been
aware that data base management systems are becoming central
elements of information processing systems, and that there is
less than full agreement in the community on appropriate design.
In addition to the existence of a number of implementations of
such systems, a 1list that continues to grow, there are several
documents generated out of the collective wisdom of some segment
of the information processing community which are either
proposals for specific systems (CODASYL 1971) or more general
statements of requirements (GUIDE-SHARE 1970), (CMSAG 1971). As
is well known, there is a debate in the community on whether
existing and proposed implementations meet the indicated
requirements, or whether the requirements as drawn are all really
necessary. Further, there have been serious questions about the
economics of systems meeting all the stated requirements.

In addition to the above considerations there is a continuing
argument on the appropriate data model: e.qg., relational,
hierarchial, network. If, indeed this debate is as it seems,
then it follows that the correct answer to this question of which
data model to use is necessarily ®"all of the above", A major
consequence of the model described in this Report is a mechanism
that pemits this answer in a meaningful sense. Much of the work
has been driven by the desire to0 accomodate the various
requirements statements and differing viewpoints.

In the autumn of 1972, responding to the clearly perceived need
to rationalize the growing confusion, SPARC took formal action to

Page I-1

initiate investigation of the subject of data base management
systems in the context of potential standardization. Consistent
with its normal practice when confronted with a complex subject,
SPARC established an ad hoc Study Group on Data Base Management
Ssystems. This study Group was convened with a charge to
investigate the subject of data base management systems with the
objective of determining which, if any, aspects of such systems
are at present suitable condidates for the development of
American National Standaxrds. The "if any" qualification is
important because a negative response is just as meaningful as a
positive response in a standards context. Standards at the wrong
time could easily restrain technological advance. The "at
present" qualification is equally significant, indicating the
continuing need for review as the requirements, technologies and
economics change over time. See the official Scope and Program
of Work of the study group appended to this chapter.

The eventual result of the deliberations of this Study Group will
be a series of reports in a specified format (SPARC 1974),
identifying potentially standardizable elements of data base
management systems and recommending whether or not there is a
need, technological feasibility and economic Jjustification for
the initiation of a standards development project in the area.
The present target date for completion of this work is late 1975.

It is appropriate to provide a list of the members of the Study
Group and their affiliations to indicate the breadth of
representation. It is worth noting the extent to which the wuser
community is participating in this effort, a rare event in data
processing standardization.

Bachman, C.W. Honeywell
Cohn, L. IBM Corporation
Florance, W.E. Eastman Kodak Company

Kirshenbaum, F. Equitable Life

Kunecke, H. Boeing Computer Services
Lavin, M. Sperry Univac

Mairet, C.E. Deere and Company

Scott, E.D. NCR

Sibley, E.H. University of Maryland
Smith, D.M. Exxon Corporation

Steel, T.B., Jr. Equitable Life
Turner, J.A. Columbia University

Yormark, B. The RAND Corporation

Page I-2

The initial +asks of the Study Group were the difficult ones of
understanding and coming to respect the varying points of view
and developing a vocabulary that was consistent and mutually
comprehensible., It is not clear whether this last task bhas yet
been fully accomplished, =although considerable closure has been
attained. :

Another early task of the Study Group was to determine exactly
what should constitute data base management from our perspective.
¥or this purpose, we considered information systems to consist of
five basic concepts:

1. Messages
2. Records

3. Procedures
4. Resources
5. Processes

Given these concepts, the question was clearly which of them are
involved in a data base management system. We decided that all
real input/output, card in and out, printer output, terminal
input and output, and data being transferred between processes
would be considered messages and be gathered under a discipline
called "message management". Furthermore, it was not part of
data base management. We decided that all the activities which
go into the preparation, compiling, testing, cataloging of a
program, such that it would be available to be executed, would be
gathered under a discipline called "procedure management', and it
was not part of data base management. We decided that all the
memory allocation problems, swapping, dispatching and tape and
disc drive assignments had to do with the physical resources of
the computer and would be gathered under a discipline called
"resources management," and it was not part of data base
management., We decided all of the aspects of local variables,
working storage, instruction counters, had to do with the state
of a process and should be gathered under a discipline called
nprocess management® and it was not part of data base management.

so we took records, fields, files, sets, and the descriptions for
all of these, and all the indicies, mapping techniques, access
methods, file organizations and end user languages, and gathered
them under a discipline called "“data base management"”. They
constituted the data base systems which we would study.

In the course of the early discussions, it emerged that what any
standardization should treat is interfaces. There is potential
disaster and 1little merit in developing standards that specify
how components are to work. what is proper for standards
specification is how the components are meshed; in other words,
the interfaces. With this notion in mind a generalized model of
a data base management system has been developed that highlights
the interfaces and the kind of information and d&ata passing
across them. Figure I-1 is a simplified diagrammatic view of
this model. The complete diagram is appended to this chapter as
Figure I-2.

Page I-3

I+ should be noted that, except for the man-system interfaces,
the technological nature of the interface is not determined; it
could be hardware, software, firmware or some mixture. Indeed,
some of the interfaces could be man-man, although pursuit of that
notion is not germane to what follows. The important point is
that the implementation of the system is not prescribed, only the
requirements that must be satisfied. As was noted above, this is
a simplified diagram; but in order to maintain consistency with
the detailed picture, the numerical identifications of the
exhibited interfaces have not been changed.

The hexagonal boxes depict people in specific roles. The
rectangular boxes represent processing functions, the arrow
terminated lines represent flow of data, control information,
programs and descriptions, and the dashed poxes represent program
preparation and execution subsystems (including compilation and
interpretation functions). Finally, the solid bars represent
identified interfaces, the ultimate subject matter of +the Study
Group's deliberations. These interfaces are numbered rather than
conventionally named for simplicity of discussion and ¢to awid
confusion.

Among the processes and interfaces omitted on this cut down
version of the diagram are the various ways that system
programmers and machine operators can use the system to make ad
hoc repairs, certain bypasses of the system mechanism that are
asserted to promote efficiency but may impact data independence,
integrity and security, and +the entire structure of physical
mapping of data onto specific storage media. All of the latter
structure is to be found to the left of interface 21, much of it
will be dictated by the hardware implementations and, as such, is
of little concern to the current investigation. The principal
elements of the Study Group's view of a data base management
system are displayed and, in particular, the three schema
approach, reflecting the new element introduced by this work, is
illustrated.

The lower right hand side of the diagram, the hexagon labelled
napplication programmer", the dashed rectangle labelled
mapplication program subsystem" and the two interfaces labelled
w7w and "12" comprise the entire non-data base activity of
preparing and executing an application program. This structure
may be viewed as replicated into a variety of subsystems, all
interfacing with the data base management system through
interface 12, differing in the nature of the language used by the
programmer to communicate across the man-machine interface 7.
This language may be a conventional procedure language such as
COBOL, ALGOL or PL/I, recognizable special languages like report
generators, inquiry languages or update specifiers, or some
potentially new type of procedure or problem language. All data
passes into the application program subsystem across interface 12
from the data base system itself.

The lower left hand side of the diagram, the hexagon labelled
“system programmer“, the dashed rectangle labelled wsystem
program subsystem® and the two interfaces labelled "16" and "18%
comprise the entire normal interface available to the system

Page I-4

programmer when it is necessary to bypass the ordinary mode of
access to the system. Routine system maintenance and
modification will occur through this subsystem. There are some
exceptions, as noted above, but they d0 not concern the thrust of
this introduction. It should also be noted that the installation
option of permitting application programmers to operate across
this interface is clearly available, recognizing the tradeoffs in
data independence, integrity and security.

current data base systems envision a two 1level structure; the
data as seen by the machine and the data as seen by the
programrer. A plethora of confusing terminolegy has been
employed to distinguish between these views. The Study Group has
chosen to employ the neutral terms "internal® and "external" +to
make this distinction. In addition, the Study Group has taken
note of the reality of a third level, which we chose to call the
nconceptual”, <that has always been but never before called out
explicity. It represents the enterprise's view of the structure
it is attempting to model in the data base. This view is that
which is informally invoked when there is a dispute between the
user and the programmer over exactly what was meant by program
specifications. The Study Groupr contends that in the data base
world it must be made explicit and, in fact, made known to the
data base management system. The proposed mechanism for doing
this is the conceptual schema. The other two views of data,
internal and external, must necessarily be consistent with the
view expressed by the concertual schema.

Ignoring the system programmers, who are not active in normal
operation, there are four human roles identified: the enterprise
administrator, the data base administrator, the application
administrator(s), and the application programmer(s). Notice that
these are roles as opposed to individuals. The same individual
may function in different roles and one role may involve several
individuals simultaneously. It is critical, however, that there
is only one enterprise administrator and one data base
administrator (viewed as 7roles) while there may be several
application administrators and several application programmers.
There can be several external schemas, each representing a
different view of the data, provided each is consistent with and
derivable from the single conceptual schema. By extension there
can be several application programmers, not necessarily working
on the same program, that use the same external schema.

Bach "administrator" is responsible for providing to the system a
particular view of the necessary data, the relevant relationships
among that data, and the rules and controls pertinent to its use.
The central view, as noted above, is that of the enterprise
administrator who provides the conceptual schema. It must be
emphasized, and apparently with repetition, as this point seems
to be the most frequently missed by those not on the Study Group
who have examined its work, that the conceptual schema is a real
and tangible item made most explicit in machine readable form,
couched in some well defined and potentially standardizable
lanquage.

Page I-5

The enterprise administrator defines the conceptual schema and,
to the extent possible and practicable, validates it. Some, but
in general not all, of this schema can be checked for consistency
by mechanical means. As the conceptual schema is a formal model
of the enterprise, when the situation is at all complex, the
model may be 1logically incomplete. The concegtual schema
contains the definitions of entities and their properties. No
entities or properties can be referenced in the data base unless
they are defined in this schema. Relationships amongst these
entities will be defined, as will the constraints on their values
and relationships. By defining those persons with some access to
the data base management system as entities of interest, it is
possible to directly model the rules of access and thus, provide
access control at the level of the conceptual schema in addition
to those provided at other levels.

The data base administrator (our definition of this role.is
somewhat at variance with conventional concepticns of the task)
is responsible for defining the internal schema. This schema
contains the description of the storage strategy currently
employed by the data base management system. Whether the data is
actually stored flat, hierarchical, networked, inverted or
otherwise, including any meaningful combination, is specified in
the internal schema. The "internal syntax" of the data values
will also be found in the internal schema; such items as the
radix for numeric values, coding schemes used, units of measure,
and the like. Access paths and the relational connectivity
between data representations will be defined. BRll of these must
be consistent with and mappable from the conceptual schema,
which, therefore, must be available for display to the data base
administrator. The internal schema processor (see Figure I-1)
provides a mechanical check on this consistency. Within the
limits imposed by this requirement of consistency with the
conceptual schema, the data base administrator is free to alter
the internal schema in any way appropriate to optimization of the
data base management syster operation. Indeed, by use of
suitable interpreters it wmay be possible to reorganize the
internal data base dynamically while normal operations continue.
In view of the massive size of some data bases currently
contemplated, this is an essential requirement, and it would seem
that only the guarantee of separation of the users' view and the
system's view of data provided by interposition of the conceptual
schema permits this.

The third *administrator" role, the application administrator,
provide the multiple external schemas which define the
application programmers' views of the data. In general, each
external schema only provides the portion of the data base
relevant to a particular application. It is envisioned that each
general application area will have its own application
administrator who provides the appropriate schemas for that area.
These are the only data descriptions (schemas) seen by an
application program - and grovide the only avenue of data name
resolution. It would carry this introduction too far afield to
discuss the complexities c¢f name resolution and symbol binding;
suffice it to say that all external name resolution, whether
performed at compile time, program invocation time, or ‘module

Page I-6

execution time are done across interfaces 7, 12 and 31 through
the intermediation of the appropriate external schema across
interface 5. -

Exactly the same remarks about the consistency of the various
external schemas with respect to the conceptual schema as was
noted about the internal schema are to be understood, with the
qualification that one external schema may be a subset of the
union of others and, the external schema processor may only
validate one external schema against more comprehensive ones
known to be consistent with the conceptual schema.

After the approprate schemas are defined, the system dynanics
becomes quite straightforward and little different from current
Systems. The application programmer (report specifier, inquiry
specifier, etc.) does his job in +the usual way, using the
provided external schema, both explicitly and implicity, as his
set of data declarations, providing procedural input across
interface 7 and invoking compilation, generation or other
relevant processes through the application program subsystem.
Upon entry to execution mode, requests for data are passed across
interface 12 to the data base management system which provides
the necessary transformations from external +to conceptual to
internal to internal storage form. Depending upon the mapping
complexity and the nature of the implementation, it may be
possible to replace multiple transformations with a single
transformation by means of a composite mapping function. The
internal schema will recognize storage as something like a
linear, multiorigined, address space, and it will be necessary to
remap this model of storage onto hardware constructs such as
tracks, cylinders and the 1like. This transformed request is
passed across interface 21 and may go through other
transformations until actual data is obtained and the process
reversed. This brief description has been couched in terms of
obtaining data but, of course, storage of data proceeds in a
similar way.

The subsequent chapters of this report discuss this model in
detail, Chapter 11 provides elaboration on the concepts
involved. Chapter III discusses several aspects of the dynamics
involved in wusing this architecture. Chapter IV discusses each
identified interface in greater detail. Chapters Vv, VI and VII
contain a view of the requirements for security, integrity and
recovery respectively, and a discussion of how each relates to
the model. Data Independence and other miscellaneous topics are
presented in Chapter VIII.

Page I-7

N3/SPARS STUDY GROLP OGN DATA DASE SYSTENS

(X3 PROJLECT 226)

SCOPE

Review existing and proposcd Data Base Systems, published reports on
Data Basc Systcems requirements and other mntcria} on Data Bgsc‘Systcms.
Develep proposals (SPARC/SQ) on thosc arcas waich appear su1t§olc, or
unsuithblc, at present for development of cither Amcrican National
Standards or Guidelines relating to Data Basc Systcms.

PROGRAM OF WORX

1. Define overall structure of an information system in order to
identify those portions which are within the scope of Data Base
Systenms.

2, Review the activities znd decisions to date by X3 and SPARC on
the subject of Data Base Systems.

3. Establish and maintain liaison with - and solicit input from -
appropriate other groups.

3.1 Study the expressed requirements for Data Base Systems.
3.2 Study representative systems and approaches.
4. Define the structure and component parts of Data Base Systems.

5. Iterate on above as required to determine one of the following
eventual outcomes.

5.1 1Identify a component of Data Base Systems which is appropriate
for standardization or guideline activity. Produce a SPARC/90 report
justifying this disposition.

5.2 Identify a component of data base system whicb ?s»at present
inappropriate for standardication or gui§e}1ne activity. Produce

a SPARC/90 report justifying this disposition.

5.3 Identify a conponént for which there is some oth@r.ration%1e e
for inaction such as the requirement or problem definition is insuffi~
cient to mzke a determination regarding-standardization or guidelines.

Recommend further study, if appropriate.

Page I - 8

En‘?ﬁx;:'rifae.

Adeinisteilor

{onez Q.v'\‘ val
Lentn
Pracessov

/ E ’ cvaa
laleenal) — \ Exticoal

Ceving, Cehena
Wotienoe Trocisso

af §~m""“‘"‘“‘,;:' - i@

SO TR T e 2 .{ —
P lnteenal/ | Concipheal/ { (km»:-"a,ﬂ“»‘aa.'\/

_” . \

§ |

\‘\ N 5‘ ! o ‘mv "-h
Jansfotrec) B | Tows fane L Tenstorner
.

‘ ‘\"\;‘;‘éﬁ'!"s&»\ , F Extecnal |

3!';%‘;‘&\ 2 ' i fyls weaal

! | (f\"\{;\\(&\ 197):
| ?\'nﬂmm ;
p Wosycem | ' sm‘sw
b :
A___qb Y @

- v
qu’rw\ \ <\F\p(>\\m.’(\o€\ '

f’\' LA

{rearmmec / e sovasy /7

ST /
e ssarssemmnd
LT

Figure I - 1

Simplified System Schematic

Page I - 9

r.-# ¥AN U L ansmannd wh 04 stes mww = i . WN!M
i o i s hrf...: T g reirw ¢ - T 8IELZ ,.
G % E Y] —_ :
. . E e e T a opowydg Hepng :
s —— TR KR rosty b \ ‘
ord, bt S S Va8t 3 - 2
R & L R swards 2svqupn - Snosn bpo\DabdSNe XN\ TONY 11
™ - > ™

Y
L
P J\MA\\ : -/ \w\\

A

g 3 . e oy 3 yd
-)
......u.uywm R PR L\vﬂ_u»ic.;b»@ Ay A o A \x\\ﬁv..,\v .., A.w
~eehA Mol Rty /.‘..Fé,va_m .t.ﬁ(.oﬂ\ vy i, A V-MWWNP e
. e D ‘o M& 7 7 7 S -
) s S p g .\.\\s.w\w.u.:,“\ / \.m\ gy \H \\ vy
I i g I 4 s

i | Ee_fﬁ.w _f suoLtuvdo

Y

\\\:/ f EO_%mM I

, ﬁ .
“.i»tfﬁb,ﬂww_ “..ﬁuw.rm._m\\.)n. _ ,f.wt./..m u...,w_ Wiy wu;v\/é _ -4 N J i] |
| aOsrTA ACISTYMY AP SO p > (2) A vy
! N R ANA S B | “ @ w _. |

' - i v

4 - s
iy

- e R AL L B
M.I : fo;;ﬂ...wwwv iy LT . .. - .\.\\\ .ﬂ?kﬂ%y\.\\ﬂ..\\m\] .‘.,..z e

75»9».«—.,

e
10 : @ '
[]

_. o] |
* _

'
' i
;

AN
]

-

(O »:cas..,u..

T ey 5t ft TP - | A M e IRy .vw .mmnwmg
TS\ m.w_%ﬁempﬁruﬁm R
c.:...w,..m.uq:w._ {, ywusdqu Dwuan
- el
W © e @ e AP = ®
L

{
!
—-— L ﬁ ———— e . -IIJ
-4 ¢ ~ n(.”ulw ‘J .I.w |.vuh.5.nrw 1
[X-TS R u..\.auu@ Visospard 0352305 kel T ; tumg | aossrad
ﬂu ,h“. /\Cdrl..(FOd»é;eMu il ..A“ﬂrl_.o_ xmﬁm /\ “Mam.ﬁ.cd_,r \t0 yras Loy
T RS Y A et reseon
R
{

vy WY \ @ - £ ‘ * A . "/ .V. /
T M & + @ ®-— @ }ﬁ‘) A \ LI
Aﬁ [paiavig _nl_ou...wf....P&J MY T gl \\\ S A AW \, ;..HNQ.Y,\
worgny b o) _ﬁ @ %ﬁmww, g ooy m«f@ 7 s \a 7t _.\mw\y.?\nu
— B @ ..ﬂ)ec;..ufi.»g .undﬂ;ﬁ.&% A&“x\ ; M) .\\»N»ﬂ \\\4\\\\\\\ ’
o_r i vosasd A v - 0%3*0 u.*... J.ul_(_8 pRle A.L.ﬁcyn_. _

Y T TSP T Bsudiajpg w28 h ¢ 259qvieq |

.Eu+um:u L ynrear pue

z.u,..* 1 :ey:mﬂ wopaboad

rd

S

PN

RRFLREN

i e . e

CMSAG Joint Utilities Project: '"Data Management System Requirements'’,
cMeAG (Orlando, FPL 1971).

CODASYL: '"Data Base Task Group Report", ACM (fiew York 1971).

GUIDZ/SUARE: "Data 3ase “anagement System Requirements', SHART Inc.
(Yew York 1970).

SPARC: "Outline for Preparation of Proposals for Standardization”,
Document SPARC/90, CBEMA (Washington, DC 19T7L).

I-1

10

I1:

TABLE OF CONTENTS

CONCEPTS coesecssasncstsosasanavesacscncssnssnsannssnsacss

1 MOGELS tueuvecvcsssosencccucsncnsssncssscsncsssasacasassas

1.1

Realms Of INterest cccececeecvccssssnscsccsssscnnanncs
Data BASE cucecccoscvrcsecocssnctssnsncsscansnssscscncnscnn
External Model .ccciecceceeccoceorcacncnacsasacscanncnne
conceptual MOAEl ..ccecsnsescsssncsscensnosnssacansane
Internal Model ..c.cceccecscenccncncancnsccscncsacscncs
correspondence Of MOGELS ccececectocnscconsnnssancnccas
Binding and Mapping of Objects to0 Each Other

Cascading of Descriptors and Materialization of

ObJECES cvcecececenncsescasacccncsecsasesesssasssscsnnasn

2 DefinitionS cccececccoessacccccenccscancscosncnsacannnsan

2.1

Properties of Objects in All RealMS cccceccncocecncans
ODJECt weseesrescasecsasascsssancsnscscsasanassnsces
Representation .c..sceecccassccsenccsssscssnscsscancns
Attribute, role and dOMAIN .cceccccseccesssacccsse
VAlUC cncveecovetoccssscenctsncancsssncannssccsnonse
Identifier ..
ClasSS, TYPE seecsccvcccccasesssasssnssansssssnsnas

eesesmwevascscssecnsccnae

Relationships and COlleCtionS cccccecccscsoscsnssccsces
. RelationShip seecececcacscscnscssascncsansscasnacsn
Association ..
Structure ...
SUDSEt ceeesceccccsacccccacsncsaccvasscscncnccnenns

Organization .ceeccececcescsssscssscassscacenasanses

@t evevsesvscssssanssnse

eevsacscsemoeacnersoscnsasassss

Generic ObJECtS cv.eeecreasconnsonscscsancsscosnscnscnsns

L]

. GIOUD cocecssacocccncsacasscesscnsesssssscscssansos
. RECOYA ceevecocncccasnanosmscsannsescscancanscasonne
° PlEeX .cnesucacccvssccsnscossaccscnsncsncsosancscsasanses
. RECOYA-SEt .teececersseccnsccssssnscncsnsnasvancnnes
Real WOrld cccvoececcscccecrascccosesascnccsancansccnccnnnae
® ENtity ceecccccccscecacacocscsvacasccsccccavencsnse
. PrOpertY cccecevecescsccacsecssccasanscannsnsncsscaccccse
L] e s s ssansnesse
¢ ENtity St wicueeecssccccansassvcacesccccsonaccsns

Page II-TOC-1

I1-6
I1-8

II1-8
I1-8
II-8
I1-8
I1-9
II-9
II-10

II-11
II-1
II-12
I1-12
11-12
II-12

I1-12
IT-13
I1-13
II-13
II-14
II-14

II-14
II-14
II-15
II-15
II-16

11

L ® ENtEIPTISE ececssecenccccsosscsmcssscnsncassosanas

External MoOdel .c.eceececncnccscassccsmscsssosnasscanssonan
. External field .eeecececcccrncsoaccccnccscscnncnons
External GIOUD esceecesasccccecssssecnnasssssnsans
External record ...
External PleX ceceeeccsacsccccscacsccssancsnccsenss
External record-Set .e..cceccecscscscusascascscsannan

conceptual MOAel ccececscenccocccancnncscccsnccsncccse
. Cconceptual field (Attribute)
. conceptual grOUP eeecescssccccessscccsanesccasccncsss
. Conceptual record (Entity record)
L)
L)
L)

CONCeptual PlEX cucecesccssscnnccecnsosnscncsnssnca
Conceptual record-set (Entity record-set)
conceptual data base scvceecuecntesceccncscscccnne

Internal Model ..ceevieccccccssscannossassccmossacsscan
Internal model SPACE ..ccscecesccsoscnsccsecanannne
Internal field (Data element)
Internal field aggregate .ececcecscccsccccsnccscnan
Internal record (Stored record)
Internal record aggregate cc.ecemescasesccsccccsace
SPACE eXLeNt ceceeecancersocnncemonsasccncsacsacscas
FOXMm eXtent c.cecvcecocncecsscccoscncscscsossscacsannnanse
Internal record-set (Data set)
Internal data DaSe .cccecoctceomecssscssasrsonsanea

Data bANK cececevvscsacacsccssccnsovonccsssanssnssne

weasessccsssnsacncs

3 Data INdependencCe .ceceveeecsssscesccccesacacscssnassany

4

Table II-1

Data Dictionary/DireCtory ceececececsccncnsscacnasssnnse

Correspondence of ObjJeCtS .cecevercoccansccnnaa

Page II-TOC-2

II-16

II-16
II-16
I1-17
I1-17
II-18
II-19

II-20
I1-20
I1-20
I1-20
I1-22
I1-22
II-23

II-24
II-24
II-24
11-25
1I1-25
I1-25
II-26
I1-26
11-27
II-27
I1-28

I1-29

I1-32

II-5

CHAPTER IX: CONCEPTS

Understanding a concept includes, among other things, the
classification of the concept with other similar concepts, and,
more important, the differentiation between that concept and
other similar concepts. To communicate the concepts of data
base, certain definitions are postulated. Some of these
definitions are more precise or more constrained than common
English language usage. It is more important to understand why
and how these terms are used than to agree upon terms.

1 MODELS

1.1 REALMS OF INTEREST

There are three realms of interest in the philosophy of
information. These realms are: the real world; ideas about the
real world existing in the minds of men; and symbols on paper or
some other (storage) med ium representing these ideas.
Information in each of these realms has properties that differ
subtly and significantly from one to another.

In addition, there are several realms of interest in data
processing, the manipulation of the symbols representing these
ideas. Three of these realms have special significance in this
technical report. These realms are: external, including a
simplified model of the 1real world as seen by o©one or more
applications; conceptual, including the limited model of the real
world maintained for all applications; and internal, including
the data in computer storage representing the. limited model of
the real world. Data in each of these realms has properties that
differ subtly and significantly from one to another.

It is necessary to distinguish the realm of each object to which
a reference is made, in order that the appropriate concepts
apply. In this technical report, different words or qualifiers
are consistently used for corresponding objects in different
realms, because contextual qualification almost inevitably fails.

Each realm consists of a data model and a schema describing that
model. An object in the real world is called an entity. The
collection of entities in the enterprise and facts about them are
represented by data in the models. These models are constructed
to represent, as completely and without distortion as justified,
the facts of interest about the entities of interest. The
precision of models is subject to the tradeoff between
application requirements (benefit) and economic feasibility
(cost). Each individual object in a model is classified, and a
descriptor exists for that type of object. A schema is the
collection of all descriptors for an entire model.

Page II-1

12

1.2 DATA BASE

A data base is the collection of data that represents those facts
defined to be of interest to an enterprise. It is an implied
(non-disjoint) collection of conceptual record-sets, the
conceptual model of that enterprise. It is in addition a
(disjoint) collection of internal record-sets, the internal model
containing the stored data.

An enterprise may in fact have more than one data base. In this
case, each data base contains data that represents some
(nominally disjoint) portion of the enterprise.

For each data base there is one (evolving) internal schema
describing the internal model, one (evolving) conceptual schema
describing the conceptual model, and as many external schemas as
required to describe the various external models that can be
materialized.

1.3 EXTERNAL MODEL

An external model 1is a collection of objects that represent the
entities of interest to a specific application or family of
applications. The object that is a model of an entity as adapted
for a specific application or family of applications is here
called an external record. This model of an entity may also be
called a logical record in COBOL, an owner or member of a
data~-structure-set, a row (tuple) in a relation, a line in a
form, or whatever is most appropriate for a specific use. Each
usage may require an external model different from that required
by another. For example, a payroll application typically views
the external data as a file,, while an interactive query facility
typically views the external data as a relation. For example, a
class-roll application views the external data as several
students enrolled in each class, while a student-schedule
application views the external data as each student enrolled in
several classes. It is desirable that these different external
models (including the same external data) can be derived from a
common, canonical, external model.

Different applications may require unshared wuse or controlled
shared use of an external model. For example, actions of a clerk
in training or of an executive while simulating or making
projections of the future should not be visible to others. On
the other hand, actions of a member of a group playing a game
should be propagated to other members of the same group, but
should not be propagated to members of other groups playing the
same game.

The objects in an external model (e.g., external records,
external fields) are materialized on demand of the application,
and they cease to exist when they are no longer of interest to
the application. For clarity of presentation, this technical
report addresses an abstract external model as though a
population of external objects does exist.

Page II-2

1.4 CONCEPTUAL MODEL

The conceptual model is a collection of objects that represent
the entities in an enterprise. The object in the conceptual
model that represents an entity is here called a conceptual
record. While there typically are many external models, there is
only one conceptual model for a data base.

The objects in the concertual model (e.g., conceptual records,
conceptual fields) need not be materialized. However, one's
understanding of the role played by the conceptual schema is
enhanced if one considers that an object seen by an application
is bound to an object in the conceptual model, and an object in
the conceptual model is mapped to object(s) in the internal
model. The motivations for this level of indirection are:
comprehensive model of conceptual data, control over usage,
control over sharing, and protecticn of investment in programs
and stored data (data independence); these arxe discussed more
fully later. For clarity of presentation, this technical report
addresses the abstract conceptual model as though a population of
conceptual objects does exist.

1.5 INTERNAL MODEL

An internal model is the collection of objects containing the
stored data that represents the external and conceptual models.
The internal model has a different motivation from that of the
other models. the most economical use of the computing facility,
consistent with processing requirements.

The internal model selected for this technical report is
considered architecurally sufficient for reflecting current
storage technologies, and for serving as a valid abstraction
between those technologies and the conceptual model. Alternate
internal models are of course possible, reflecting similar or
different technological, economic, configuration, implementation,
or packaging considerations. It is also possible to introduce
additional kinds of objects into the internal mwodel selected, or
to superimpose additional models. These augmentations or
superimposed models can provide additional available interfaces
and facilities, but they need not participate in the mapping
between the internal model and the conceptual model. Examples of
such augmentations are access methods, or data dependent data
base facilities, lacking control and flexibility provided by a
conceptual schema driven data base management system. Although
these alternatives are not considered to be architecturally
necessary, they exist in today's data base products, and should
be undexrstood by the data base study group.

The objects in the internal model (e.g., internal records,
indexes, pointers, labels) do exist. They are permanent, in that
once physically stored in the data base, these objects persist
until they are explicitly physically deleted. There is a
population of internal data.

Page II-3

13

1.6 CORRESPONDENCE OF MODEIS

It is essential that external models can be extracted from other
external models, that external models can be extracted from the
conceptual model, and that a mapping can be constructed between
the conceptual model and the internal model. It is not necessary
that all these models be the same. An internal record-set need
not represent one specific entity set; the fields of an internal
record need not represent the facts about one specific entity
(e.g., in an inverted file, each internal field in an internal
record represents the same fact about a different entity). An

" internal record need not correspond one-to-one +to0 a conceptual

record.

Depending upon the flexibility of the data base management
gystem, there need not be a one-to-cne correspondence between
internal record-sets and external record-sets. The external data
in an external record-set may be materialized from vertical and
horizontal concatenations of portions of different internal
record-sets. That is, the sequence of external records in an
external record-set may be materialized from sequences of
internal records in different internal record-sets (vertical
concatenation) ; and individual external records can be
materialized from internal fields in different internal records
(horizontal concatenation). Depending upon the control over
conflicting access available in a data base management system,
more than one external record-set may be opened upon the same
internal record-set.

It is reasonable to assume +that entities and conceptual data
representing facts about entities may have a longer life than the
technologies upon which hardware and software implementations are
based. Therefore, ¢the internal model should be able to change
with change in implementations as technologies evolve, so that it
can remain most economical. Frequently it is economical for the
models to be the same; with some combinations of application
requirements and state of the art, it may be essential that the
models be the same.

To maintain the concept that the models can be different from
each other, and to be able to communicate this concept to others,
it is necessary to define terminology that differentiates between
the models.

Page II-4

; T 1
REAL EXTERNAL | CONCEPTUAL INTERNAL |
WORLD MODEL i MODEL MODEL |
4 d
contracts, External | Conceptual Internal 1
laws, customs schema | schema schema
i I 'l 1
L L] v L)
| Management Application Enterprise Data base
{ administrator | administrator | administrator
— t t 4
| Enterprise | Conceptual | Internal
| | data base | data base
1 1 Jl
L g T T
Entity External Conceptual Internal
set record-set record-set record-set
— + +
| External Conceptual See note 1.
| plex plex
+ + t
Entity External Conceptual Internal
record record record
L L L
Ll 1 L}
External Conceptual See note 1.
group group
L i
Ll T
Property External conceptual Internal
field field field
[A
1

. Inter- and intra- internal record constructs depend upon space
and performance oriented internal data storage organization
considerations, and not upon information relationships; thus
no single, general, canonical term for internal constructs is
applicable.

TABLEII-1 CORRESPONDENCE OF OBJECTS

TableII-1 demonstrates the correspondence among objects defined
in this technical report. Just as management writes the policies
according to which the enterprise is operated, the data base
administrator writes the internal schema according to which the
internal data base is operated. Just as an entity set is a
collection of entities, an internal record-set is a collection of
internal recorxds.

1.7 BINDING AND MAPPING OF OBJECTS TO EACH OTHER

Entities and properties of entities can be represented by:
objects, the descriptors of which are declared in a source
program (e.g., a data division); objects, the descrigptors of
which are defined in a relational external schema, defined in a
Cobol external schema, defined in an accountant's external
schema, and/or defined in a canonical external schema. The
descriptors of objects declared in a source program, either
directly or from an external schema, are bound to descriptors of
objects defined in the conceptual schema. The objects, the

Page II-S

14

descriptors of which are declared in these schemas are all
abstract; the internal data is actually stored in objects, the
descriptors of which are declared in the internal schema. The
objects, the descriptions of which are defined in the conceptual
schema, are mapped to objects, +the description of which are
defined in the internal schema. This does not imply any specific
one-to-one mapping among these objects.

An object that is 1local to an application's external model, may
be not represented by internal data, and may be not under the
control of the enterprise administrator. 1In this case, there is
no object defined in the conceptual schema to which the object
defined in the external schema can be bound.

The conceptual schema may contain descriptors of objects that may
be not represented by internal data. This may be during the
development of augmentations to the conceptual schema, before
defining and collecting internal data, or +to increase the
understanding of the interrelationships between data stored in
this data base and data stored in another data base or data -that
is not machine processable. In this case, it is not envisioned
that any object defined in an external schema would be bound to
such an object defined in the conceptual schema, except for
testing.

1.8 CASCADING OF DESCRIPTORS AND MATERIALIZING OF OBJECTS

While "materializing® intuitively implies the abstraction of an
external record from stored objects (commonly known as GET), in
this technical report “materializing" is also intended to imply
the reverse process {commonly Kknown as PUT) . The words
"materializing from® should be read as “materializing from and/or
dematerializing to." While this technical report in general, and
this discussion in particular, 1limits itself to materializing
from internal model to external model only, an implementation
must be concerned with materializing from external storage model
(external storage records on a medium) to external model
(external records in a user's work area).

A range of implementations can exist for traversing descriptors
and materializing objects from model to model. This range allows
different tradeoffs for performance and functional flexibility.
At one end of the range, an implementation may require that a
conceptual record be congruent to an internal record, and that an
external record be congruent to a conceptual recorxd. In this
case, an external record is materialized directly {(one-to-one)
from an internal record. Greater flexibility is possible if an
implementation materializes an entire conceptual record from
internal record(s), and permits an external record to be
extracted from that conceptual record. In the following cases, a
conceptual record need not be materialized as an intermediate
step; that is, the descriptors are manipulated while the
conceptual objects they describe are not. Processors can be
developed that can traverse the descriptors statically, and
generate a mapping (compile a code) that materializes external
records directly from internal records. Alternatively, an

Page II-6

impleqentation can traverse the descriptors dynamically with
materialization algorithms locally optimized to reflect the
varying characteristics of internal records as they are
encountered in different form extents. At the most ftlexible end
of the range, an implementation can traverse the descriptors
statically or dynamically, with the system determining which is
the more optimum for that application/access, taking advantage of
matching characteristics, nesting of external records within
internal records, constancy of descriptors, and number of
internal records to be traversed for the particular operation.
The concepts and definitions in +this technical report are
applicable to the entire range of implementations anticipated in
the time scale of the results of this study.

Page II-7

15

2 DEFINITIONS

Based on the ccncepts discussed above, terms are defined in this
section. Scme of these terms are ccmmon to a number of realms
(real world, external model, conceptual model, internal model).
others of these terms classify and differentiate among the
concepts and realms to which they apply.

2.1 PROPERTIES OF OBJECTS IN ALL REARIMS

. Object

An object is something in the real world or in one of
the models. It can be an entity, or it can be a
representation of an entity, or it can be a
representation of another object that is not a
representation of an entity. An object can be of a
particular class or type, it may have a descriptor that
corresponds to that class or type, and instances or
occurrences of objects conforming to that descriptor may
exist. In this technical report, the term "cohject" most
frequently implies an occurrence. The distinction,
object class or type, object descriptor, or object
occurrence, is made only when essential to the
exposition.

. Representation

A representation is an image, symbol, or token for an
entity or other object; for example, a map may represent
a city, a passhook may represent a bank account, the
value of a field may represent a value of a property of
an entity.

Representation includes consideration of a token and its
embodiment; for example, a passbook is printed on paper.
There is a (mental or material) mapping of the token to
its embodiment. such mapping may be quite indirect and
complex, or it may be simple to the point of congruence.
Any required congruence between a token and its
embodiment depends upon such factors as the time
available to do such mapping, or the (lack of)
sophistication of the mentalizer or materializer.

. Attribute, role and domain

This discussion is in terms of objects defined in the
conceptual schema. It is equally applicable to objects
defined in an external schema; however, an external
schema may be tailored to a particular language or
application family in which the concepts of role and
domain may have been obscured.

Page II-8

An attribute (conceptual field) is the representation of
a property of an entity. A 1role is the function a
conceptual field in a conceptual record plays in
describing each individual in an entity set (an example
of a role-name is *"charged-to"%). A domain is the
population of values from which those valid for a given
conceptual field may be selected (an example of a
domain-name is "department-number®). Values in the same

domain are always comparable even if their
representations are different; while values in different
domains may be not comparable even if their

representations fortuitously coincide. BAn active domain
is the population of wvalues for a given conceptual field
that currently represent facts about entities in
existence.

An attribute stands for a role and a domain; it is
excellent practice for an attribute-name to contain both
the role-name and the domain-name (e.g., "charged-to
department-number")., For human factors reasons, the
symbol used as a column heading in a program may well be
a shorter, snappier, more locally mnemonic, synonym for
the system attribute-name containing role-name and
domain-name. The function played by attributes, roles
and domains in wvalidation and establishment of
relationships is discussed in greater detail in Chapter
VIII.

Value

A value is an occurrence of a property of an entity or
other object, or the representation of that occurrence
in any of the models. A value can be either the name of
a quality or a quantity (count). For example, "blue,"
"114 Street," are names of qualities, and "36" is a
quantity. ("36" can be a quality in some contexts.) In
general, ordinal numbers are names, and cardinal numbers
are gquantities. Arithmetic is often practiced upon
ordinal numbers (as well as other kinds of symbols
spelled in digits) but such operations may yield bizarre
results (e.g., the product of ¢two zipcodes), or less
than accurate results (e.g., calculating the number of
floors between 12 and 14 in most hotels).

Identifier

An identifier is a property or combination of properties
the values of which serve as the name of or token for an
entity or othex object. The token may be a commonly
used name, or it may be a value or combination of values
not commonly used as a name, or it may be an arbitrarily
assigned token (e.g., system identification number, data
base key) not commonly known outside of the context in
which it is assigned. Examples are, ®Tom," ™HBR624"
n123-45-6789," '"nut," "trolley assembly retainer nut,"

Page II-9

16

“blonde, blue, 117, 36, 24, 36, 22," “E984386." If the
entity can always be distinguished from any other entity
by that name, then the identifier is unique., An entity
may have different identifiers, such as employee number,
social security number, credit card number,
geneologically comglete name. By convention, one of
these is adopted as prime. An identifier may be unique
only in a given context, such as a given name in a
family, or a system identification number.

The value of an identifier in a model is called a key.
If the entity can be uniquely identified by a particular
identifier, then that key can be unique. It is common
practice that prime keys be selected so that they be
unique and so that they need not change for the life of
the identified external record, conceptual record, or
internal record.

Class, Type

Class and type are two methods of equivalent function
for classification of entities or other objects: (i)
class is the collection of objects that are similar in
that they have the same prototype; (ii) type is the
prototype for the collection of objects that are
similar.

(The name of) a class of objects is (the name of) a
collection of objects that are similar; that is, things
that have the same kinds of properties (things that have
the same descriptors). The criterion for similarity is
that they conform to an arbitrary set of rules; for
example, all people are in the same class if such
properties as sex, skin color, last name, are considered
to be properties of people and not properties that
distinguish people from something else; while bugs do
not include spiders, if +the number of 1legs is not
considered to be a rroperty of bugs but distinguishes
bugs from other things. The set of rules defines every
member of the class; it also defines the prototype, a
typical member of the class. ' The (name of the)
prototype is the (name of the) type of that object. One
can be concerned with an entity class, typified by an
entity type. One can be concerned with an external
record class, typified by an external record type. Thus
one can classify each of a collection of objects either
by identifying its type or by identifying its class; one
can associate an object with its descriptor either by
naming its type or by naming its class. (See the
definition of "form extent®™ for a qualification of this
definition with respect to the internal model.)

"Class"™ is not used in its mathematical sense.

Page II-10

2.2

REIATIONSHIPS AND COLLECTIONS

Relationship

A relationship in the real world is a connection between
two or more collections of entities, individual
entities, or properties of entities. A relationship
involves the objects connected, the kind of connection,
and the direction of connection. Real world
relationships can be very complex, involving similar or
dissimilar objects in undirected, singly directed, pairs
of singly directed, bidirected, nontrasitive,
transitive, recursive, inverse, converse, reciprocal,
and other kinds of connections. Relationships between
objects evolve and change. Objects c¢an have many
relationships concurrently. Two objects can have more
than one relationship between them concurrently.

The richness of real woxrld relationships is beyond the
capability for modeling. Representations of real world
relationships are grossly simplified and stylized,
Usually only the fact of the relationship is specified;
the kind of relationship (semantics, context, current
status, etc.) 1is not. That an apparent relationship is
imposed by the model without a real world counterpart,
or is misleading, cannot be determined from the model.
The meaning of the relationship is often buried in the
algorithm that processes the object, and is not
displayed by the model.

A relationship in the external or conceptual model is a
connection that provides a selection path for each
identifiable object. An object can be identified by the
relationships in which it is involved as well as any
other properties of that object.

A relationship in each model is a connection between two
or more objects in that model. Objects and
relationships in one model can be mapped to objects and
relationships in another model. It is possible to
represent a relationship as a *“juxtaposition," as a
"subordination," as a one-to-many Or many--to-many
“connection," as common values in a shared domain, or as
an external or conceptual "intersection record." The

means of representing a relationship in a model should

not be assumed to be the real relationship.

A more detailed discussion of relationships appears in
Chapter VIII.

Contrast an information-bearing relationship in the

external or conceptual model, with an access path in the
internal model.

Page II-11

17

Association

An association is a collection of zero or more objects
connected by an unstructured or non-directed
relaticnship. For example, a collection of children on
a playing field (while it may be possible to impose a
structure upon such a collection, the collection is an
association only independently of any such structure).
Each component may be an elementary item, an
association, or a structure. The mwathematician's name
for an association of unigue objects is a set.

Structure

A structure is a collection of =zero or more objects
connected by a directed relationship (e.g., a grade, a
mutual). It is a sequenced (order} and/or stratified
{level) collection of components. Stratification may be
binary, hierarchical, network, etc. Each component of a
structure may be an elementary item, an association or a
structure. While a structure may be a member of a set,
a set may be a component of a structure, and the objects
that are components of a structure may form a set, the
components of a structure do not form a mathematical
set.

Subset

A subset is a mathematical set each of whose elements is
an element of an inclusive set. Also used freely in
this technical report not in its mathematical sense, but
to denote "fragment" -- a piece of an element (e.g., a
leg of a structure).

Organization

An organization is a physical arrangement of internal
data and system oriented metadata (e.g., volume labels,
internal record-set labels, data set labels, indexes,
pointers) in the internal model that provides an access
path to each identifiable occurrence of the internal
data. Contrast an access path, a tool to find (by
location) an internal record stored in a internal data
storage organizaticn, with selection path, a tool to
choose (by characteristics) an external recoxrd
structured or associated in an external record-set.

2.3 GENERIC OBJECTS

The following five objects appear in one or more of the models.
The generic definition for each of these objects appears here;
the significant differences appear in the discussion of each

while there is a generic definition, in this technical

Page II-12

report there are no generic objects; that is, there are no
records in a data base, but there are external records,
conceptual records, or internal records.

The operations "“open," "stcre," "address," "retrieve," "modify,"
vdelete," "close," etc., and the qualifiers "logicaln and
nphysical" are used in these definitions; however, these
operations are not defined in this technical report. It is
intended that they convey an intuitive meaning consistent with
common usage.

. Field

A field is the smallest named object in a model. A
field is the object that is modified when a value is
changed. The value of a field represents an algebraic,
or boolean quantity or some symbolic quality. The value
of a field is atomic; if it is further subdivided, then
it cannot be assigned a meaning. If a value is
nonatomic, then it is the value of a group. A field has
a name, a descriptor, and a population of occurrences.

wFieldw is not used in its mathematical sense.

. Group

A group is a named association of or structure of zero
or more fields and/or groups. These fields or groups
may be of one or more types. An occurrence of a field
or group is complete in any group in which it is
contained. Fields are collected into groups for one of
two reasons: either to provide an association of fields
that are addressed together, that provide a complex
meaning (e.g., month,day,year as date); or to provide a
vector or indexable array of multivalued fields or
groups (e.g., an array of the group: month, sales,prior
12-month running total). A group may be composed of a
fixed or variable number of components. A group has a
name, a descriptor, and a population of occurrences.

nGroup" is not used in its mathematical sense.

. Record

A record is a named association of or structure of zero
or more fields and/or groups. These fields or groups
may be of one or more types. An occurrence of a field
or group is complete in any record in which it is
contained. A recoxrd is the object that is logically or
physically stored, retrieved, or deleted. A record may
be composed of a fixed or variable number of components.
A record has a name, a descriptor, and a population of
occurrences.

Page II-13

18

) Plex

A plex is a named association of or structure of zero or
more records and/or plexes. These records or plexes may
be of one or more types. BAn occurrence of a record or
plex is complete in any plex in which it is contained.
Plexes may be of different constructs; for example, a
data-structure-set or an IMS data base record. Records
are collected into plexes to provide a vector or
addressable array cf occurrences about a subject for
which a commonality has been defined {e.g., the various
educational achievements of an individual, the various
components of a part); the plex acts as a reference
mechanism. A plex may be composed of a fixed or
variable number of components. A plex has a name, a
descriptor, and a population of occurrences.

. Record-set

A record-set is a named association of or structure of
zeyo or more records and/or plexes. These records or
plexes may be of one or more types. An occurrence of a
record or plex is complete in any record-set in which it
is contained. A record-set is the object that is opened
or closed, and it is the largest object to which another
object can be bound. A record-set has a name, a
descriptor, and a population of one or more occurrences
(generations, versions, etc.).

2.4 PREAL WORLD

The following terms relate to the real world and to the objects
in it (more precisely, to the ideas about them existing in the
minds of men), and not to the objects in the models of the real
world.

. Entity

An entity is a persom, place, thing, concept, or event,
real or abstract, -of interest to the enterprise.

The scope of an entity is arbitrary. That is, part of
an entity can be separately defined and named, and that
becomes an entity. A fproperty of that part of the
entity becomes also a . property of the newly created
entity. A collection (association or structure) of
entities can be separately defined and named, and that
becomes an entity. A rproperty of an included entity
becomes also a property of the including entity. Thus
the number of entity types and the number of individual
entities is essentially unbounded in any context.

One particular kind of entity of interest to a system,
as opposed to of interest to an enterprise, 15 a

Page II-14

(system) object that is defined in c¢ne of the three
schemas. For examrple, a conceptual record or an
internal field. These entities are objects that
comprise a data base, rather than those that comprise
the enterprise. In this case, what is of interest is
not the facts represented by these (system) objects, it
is one of these objects itself. For example, what is of
interest is not money, it is the punched card check
document (or the conceptual xecord or the internal

record). Properties of these objects include 1length,
encodement, etc.
Prope;;}

A property is a characteristic of an entity; for
example, a name, a Jjob title, names of children, a sum
of money, department membership.

A property plays a role in describing an entity; for

example, identifying it, characterizing it, relating it

to others, etc. A progerty has a domain of eligible

values; for example, haircolor may be blonde, brown,

;id, black, while eyecolor may be hazel, brown, green,
ue.

The same property may be a characteristic of more than
one entity type. For example, employees, children, gets
and boats may all have names, weights, or identification
numbers. There is no inherent reason that the
permissible values for a property (e.g., weight,
identification number) of a person and a boat cannot be
in the same domain.

\
Fact

A fact about an entity istan assertion that a property
of that entity has a given value; for example, "name is
Herb," "job title is programmer,"™ "names of children is
(David, Scotty, Freckles)," "“sum of money is s3.98,"
vdeparment membership is J57." A fact may be true or
untrue, but it is what is known about that entity.

The same fact may be true of more than one entity -- a
certain sum of money may be a payment to a person, a
payment for a transaction, a payment by a department.
That *3.98 is the payment" is the same fact and not just
a coincidence of numbers is obvious. That this fact is
true of three different entities (of three different
entity types) - a person, a transaction, and a
department -~ is also cbvious.

Page II-15

19

L Entity set

An entity set is a collection of related entities; that
is, a set of entities of one or more types that have
something in common or are connected in a manner that is
of interest to the enterprise. Examples might be the
set of employees, the set of children, the set of
furniture (lamps, chairs, tables, etc.), the set of
transactions (sales, purchases, payments, etc.), the set
of departments.

An entity may be a member of more than one entity seé)at
one time. For example, an individuval may be an
employee, a child, and a participant in a sport at one
time.

. Enterprise

An enterprise is a collection of people, artifacts,
ideas, events, processes, information and data
structured logically and organized physically to
accomplish some goals. It is a particular collection of
entity sets. It is a defined environment in which a
data base system will operate.

2.5 EXTERNAL MODEL

The particular set of objects defined bhere includes those
aprropriate to a canonical external model. Other sets of
components (e.g., attribute, row, relation; elementary item,
group item, 1logical record, file; entry, line, table, form or
report) appropriate to an external data structure, a programming
language, a specific application (family), correspond
(approximately) to those defined here.

. External field

An external field is the smallest named external data
object to which an application program can refer. It
has a magnitude, dimensionality, and a unit of
dimension, or scme non-quantitative interpretation. It
may be of fixed or varying length.

There need not be a one-to-one correspondence between
values of external fields and values of internal fields.
The value of an external field may be a translation,
transformation, concatenation, 1logical or arithmetic
computation, or scme cther algorithm performed upon the
value of one or more internal fields, or the count of
occurrences of objects. An internal field may
participate in the materialization of one or more
external fields.

Page II-16

External group

An external group is a collection of zerc or more
external fields and/or external groups. The contents of
an external group need not be disjoint from those of
other external groups. A type or occurrence of an
external field or an external group may be contained in
zero or more extermal grougps.

External record

An external record is a collection of =zero or more
external fields and/or external groups as viewed by an
application program, to which concurrent accessibility
is made available by a single primitive external data
manipulation operation. The contents of an external
record need not be disjoint from those of other external
records. A type or occurrence of an external field or
an external group may be contained in one or more
external records.

By definition, all of the fields in an external record
represent facts about the same entity. Each entity has
an identity; therefore each external record has an
identifier, such as employee number, state name, Or
external record sequence number (in an external
record-set of invariant occurrences of external
records) .

If an external record contains varying numbers of nested
repeating external groups, then it could be called
hierarchical. If an external record is included in a
number of external plexes, then it could be called a
network record. It can be both hierarchical and network
concurrently.

Depending upon the flexibility of the data base
management system, there need not be a one-to-one
correspondence between internal record-sets and external
record-sets. The external data in an external
record-set may be materialized from vertical and
horizontal concatenations of portions of different
internal record-sets. That is, the sequence of extermal
records in an external record-set may be materialized
from sequences of internal records in different internal
record-sets (vertical concatenation); and individual
external records can be materialized from internal
fields in different internal records {horizontal
concatenation). Tepending upon the control over
conflicting access available in a data base management
system, more than one external record-set may be opened
upon the same internal record-set(s).

An occurrence of an external record is materialized by
materializing each of the values of the external fields
associated in it during a single primitive external data

Page II-17

20

manipulation operation. An application may retain
interest in (a token for), and maintain concurrent
access to, more than one external record, in the same or
different external record-sets. An external record
ceases to exist when it is no longer of interest to the
application (e.g., when the external record is released,
or when it is replaced by another occurrence). (This
ignores the common data management function of buffering
ahead on input, or behind on output.)

**x*xxpdd discussion here of exclusive control over
external records in the same or different external
record-sets and the synchronization implications on the
same oy different programs; and discussion of
propagation of changes to one "“copy" of an external
record to other "copies® in the same or different
external record-sets used by the same or different
programs. kxkkkx

In a controlled data base system, the permissible
collections of component external fields and external
groups are predefined in the conceptual schema in
descriptors of conceptual records. To be permissible,
an external record is required to be a subset of (but
not necessarily a proper subset of) a conceptual rxecord.
An alternate technique of control is to predefine in the
conceptual schema the permissible combinations of
components of conceptual records; since a construct of
conceptual records when named becomes a conceptual
record, this is another way of saying the exact same
thing.

It is desirable that it be rpossible to define an
external record type canonically. That is, to define it
in one declaration, with the external schema processor
having the ability to display the descriptor in any of a
number of language oriented or application oriented
formats and the external-conceptual bind function having
the ability to bind an external record to a conceptual
record despite any difference in display formats.
obviously, it should be possible as well to constrain
the external schera processor from displaying an
external record descriptor to an individual in a format
not authorized to him, and the external-conceptual bind
function from accepting a format not authorized to the
requestor of the bind. 1If the capability to define an
external record type canonically is not invented, then
it will be necessary to define an external record type
separately for each format in which it may be displayed
and in which it may be presented for binding. :

External plex
An external plex is a collection of zero or more
external records and/or external plexes. The contents

of an external plex need not be disjoint from those of

Page IXI-18

other external plexes. A type or occurrence of an
external record or an external rlex may be contained in
zero or more external rlexes.

While occurrences of external plexes are not in fact
materialized (external records are materialized one at a
time, and then cease %o exist), they are defined as
though they would exist, and users may think of them as
though they exist.

External record-set

An external record-set is‘a collection of zero or more
external records and/or external plexes, as viewed by an
application program. The contents of an external
record-set need not be disjoint from those of other
external record-sets. A type or occurrence of an
external record or an external plex may be contained in
one or more external record-sets, An external
record-set can be defined over a subset of another
external record-set. An external record-set can be
defined over all occurrences of one or more external
record types, some occurrences of one or more external
record types, etc.

An external record-set can be unsorted, in that there is
no explicit relaticnship among the external records that
determine the sequence, and the external records are
selected either by name or in an arbitrary, possibly
unpredictable sequence. An external record-set can be
sorted, in that the external records have an explicit
relationship with each other. This explicit
relationship can be represented by a specific crdering
of the external records, or by structures of the
external records and external plexes, or in other ways.
Modifying the value of a structural external field (one
that controls the ordering or establishes structure of
an external record-set) causes the immediate alteration
of the position of that external record in the external
record-set. {(Not yet discussed at this point is the
timing of the effect of a change to a value of a
non-structural or structural external field upon others
sharing the same internal data.) *****SHOULD IT BE?#**¥*%

Accoutrements of external record-sets (e.g., user
labels) are visible tc¢ applications. The internal data
storage organizaticnal components of the internal model
(e.g., volume labels, internal record-set 1labels,
indexes, pointers, hash addresses) are not visible to
applications.

¥hile an external record-set is not in fact materialized
at one time {external records are materialized one at a
time, and then cease ¢to exist), an external record-set
is defined as though it exists, and users may think of
it as though it exists. An external record-set exists

Page II-19

21

from the time it is opened until the time it is closed.
Then it ceases to exist. The internal data continues to
exist, as internal fields in internal record-sets.

2.6 CONCEPTUAL MODEL

Conceptual field (Attribute)

A conceptual field is the smallest named conceptual data
object that represents an idea or a fact about an
entity. It is defined by its role and domain. A
conceptual field implies some algebraic, boolean, or
symbolic value, As a conceptual field is not
materialized, it has no format or picture; i.e., there
is no particular bit pattern or character pattern for
the value of a conceptual field, nor relative position
or layout of conceptual fields in a conceptual group or
a conceptual record.

Conceptual field is often called "attribute" by others.

Conceptual group

A conceptual group is a collection of 2ero or more
conceptual fields and/or conceptual groups. The
contents of a conceptual group need not be disjoint from
those of other conceptual groups. A type or occurrence
of a conceptual field or a conceptual group may be
contained in zero or more conceptual groups.

Conceptual record (Entity record)

record is a collection of zero or more
and/or conceptual groups that
The contents of a conceptual
record need not be disjoint from those of other
conceptual records. A type or occurrence of a
conceptual field or a conceptual group may be contained
in one or more ccnceptual records.

A conceptual
conceptual fields
represents an entity.

A conceptual record contains the conceptual data
representing the facts defined to be known about a
specific entity. Fach entity has an identity; therefore
each conceptual record has an identifier, such as
employee number, state name, or perhaps an arbitrarily
assigned system identifier.

A construct of conceptual records can be defined. Some
or all of the conceptual field types in a conceptual
record type may be combined with other conceptual field
types in an independent interrelationship that
represents another entity (type). For example, the same
3.98 is the c¢ost of a thing, the amount of a sale, the

Page II-20

debit to an account. If this construct is named, then
it becomes another conceptual record type. A conceptual
field type that was an identifier in one conceptual
record type need not be an identifier in another with
which it is associated. Thus the same conceptual data
may have a network of defined relationships and may
appear in a multitude of conceptual records. Some
relationships may remain undefined -- it may be policy
that these relationships be undefinable.

A conceptual record may be of arbitrary complexity, such
as an IMS data base record. It may include intersection
conceptual data, associated conceptual data, redundant
conceptual data, that way improve the usability, if not
the clarity, of the conceptual data. A conceptual
recoxrd is defined without consideration for
addressability. That is, the descriptor is for the
complete structure, without regard for segmentation,
Repeating groups are not distinguishable from repeating
segments Or repeating members; in a conceptual record
they are all represented as repeating conceptual groups.

In general, it is anticipated that descriptors of
conceptual objects can be nested -~ that is, more
complex objects can be defined in terms of associations
and structures of less complex objects. The 1least
complex conceptual record can be called %“underlying
conceptual record"; for reasons of data independence it
is useful that these underlying concegtual records be
not displayed to users, or be not bound to by external
records or external plexes; for the sanity of the
enterprise administrator it is useful that these
underlying conceptual records be of "third normal form."

The most significant fact about a conceptual record type
is that its definition is stable. once defined, the
definition lasts as 1long as it is used; because the
definition is not modified, existing users of it are not
disturbed (in general, it can be augmented without
disturbing any existing users). If a different -- even
slightly differemt =-- definition is required for a new
application or for a modification to an existing
application, then another conceptual record type is
defined (possibly materialized from the same internal
data), maintaining the original definition of the pre
existing conceptual record type unchanged. Change in
the structure of the environment being modeled: the
enterprise's organization, the business policies, the
financial, auditing, accounting principles, the
operating procedures, etc.; is accommodated by defining
new conceptual record types and maprings as required to
model the new environment. The mapping of existing
conceptual records from internal records is modified if
the change in environment resulted in a change to the
internal model, as well as a change to the conceptual
model, The definition of existing, exposed and
committed conceptual record types need not be modified

Page II-21

22

if a mapping from the internal data can be constructed
that preserves the validity of existing applications.

Generations of maprings may need to be maintained, to
traverse different form extents, or t0 traverse
historical internal data as it was then viewed.

It is desirable that it be possible to define a
conceptual record canonically. That is, to define it in
one declaration, with the conceptual schema processor
having the ability to display the descriptor in any of a

number of equivalent structures, and the
internal-external transformation function having the
ability to present an Yoccurrence" (actually, an

external record bound to it) to an object program in any
of a number of equivalent structures. Obviously, it
should be possible as well to constrain the conceptual
schema processor from displaying a conceptual record
description to an individuwal in a structure not
authorized to him, and the internal-enternal
transformation function from presenting it to an object
program in a structure not authorized to it. If the
capability to define a conceptual record canonically is
not invented, then it will be necessary to define a
conceptual record separately for each structure in which
it may be displayed and to which it may be bound.

Conceptual record is often called "entity record" by
others. Another meaning of entity record, implying
unstructured (third normal form} record rather than
intermediate in a definition and materialization
process, is also in common usage.

Conceptual plex

A conceptual plex is a collection of zero or more
conceptual records and/or conceptual plexes. The
contents of a conceptual plex need not be disjoint from
those of other conceptual plexes. A type or occurrence
of a conceptual record or a conceptual plex may be
contained in zero or more conceptual plexes.

Since a conceptual record can be as complex as many
plexes, and since addressibility is not a consideration
of the conceptual model, substitution of a definition of
a conceptual record for the definition of a conceptual
plex (or vice versa) is a matter of taste for the
definer.

Conceptual record-set (Entity record-set)

A conceptual record-set is a collection of zero or more
conceptual records and/or conceptual pPlexes that
represents a set of entities. The contents of a

conceptual record-set need not be disjoint from those of

Page II-22

other conceptual record-sets. A type or occurrence of a
conceptual record or a conceptual plex may be contained
in one or more conceptual record-sets. A conceptual
record-set can be defined over a subset of another
conceptual record-set. A conceptual record-set can be
defined over all occurrences of one or more conceptual
record types, some occurrences of one Or more conceptual
record types, etc.

A conceptual record-set contains the conceptual data
representing the facts defined to be known about some
set of entities (not necessarily similar entities). = It
can constrain the population eligible to be_associated
in the set. It can constrain the orderings among the
population. It is the object to which an external
record-set may be bound.

Conceptual record-set is often called "entity
record-seth" by others.

Conceptual data base

A conceptual data base is a single, disjoint,
integrated, named collection of conceptual record-sets
described in one coanceptual schema. It contains the
conceptual data representing all of the facts defined to
be known about ({that portion of) the enterprise. It is
coterminous with an internal data base in that all of
the conceptual recorxrd-sets defined in one conceptual
schema refer to only the internal record-sets defined in
one internal schema, and all the internal record-sets
defined in one internal schema are referred to by only
the conceptual record-sets that are defined in one
conceptual schema. Thus, a conceptual record-set is
contained entirely within one conceptual data base.

The conceptual schema may also include descriptors of
conceptual record-sets that 4o not refer to any internal
record-sets in the internal data base; that is,
representing which internal data is not collected. It
is possible that a conceptual record-set is defined that
duplicates the definition of a conceptual record-set
representing which internal data exists in another
internal data ba se. Neither the conceptual schema
processor nor the data base management system can
diagnose this situation, nor can <they provide any
automatic function or control over +this (apparently)
non-existent internal data.

Page II-23

23

2.7 INTERNAL MODEL

Internal model space

The internal model space is the abstraction of address
space in which the internal data is stored. For the
purpose of the internal schema, the internal model is
represented as a flat, unbounded, multi-origin, linear
address space. The unit of displacement can be modeled
upon such things as bits, bytes, words, internal
records, physical records (internal storage records or
external storage records), tracks, cylinders, volumes,
etc. The system dontrol data ordinarily written on a
volume (e.g., tables of contents, directories, volume
labels) are visible in the internal model. Performance
oriented characteristics of internal data storage
organization (e.g., store near, store-through or
see-through, multiple copies of indexes or control
blocks, redundant (backup, tailored or distributed)
copies of the same internal data) are visible in the
internal model. Performance oriented characteristics of
external storage wmwedia (e.g., volume capacities, track
lengths, latencies) are reflected in the internal data
storage organization of the internal model. The
physical characteristics of external storage media
(e.g., bit representations, redundancy or parity checks,
any considerations of data portability or interchange)
are not visible in the internal model.

Internal field (Data element)

An internal field is the smallest named internal data
object in the internal model. The value of an internal
field is encoded and stored in a consecutive string of
internal model space units (bits, bytes, words, etc.).
It has a magnitude, dimensionality, and a unit of
dimension, or some non-guantitative interpretation. It
may be of fixed or varying length.

There need not be a one-to-one correspondence between
values of internal fields and values of external fields.
The value of an external field may be a translation,
transformation, concatenation, 1logical or arithmetic
computation, or some other algorithm performed upon the
value of one or more internal fields. or the count of
occurrences o0f objects. An internal field may
participate in the materialization of one or more
external fields. :

Internal field is often called "data element™ by others.
In this report data element is used only for elementary
stored data objects not integrated into an internal data
base.

Page II-24

Internal field aggregate

Internal fields may be aggregated, subordinate to an
internal record, to reflect access strategies.
Congruence with (a portion of) a conceptual record is a
(rather frequent) coincidence, when several such
portions are frequently accessed in sequence oOr
concurrently. There is no attempt to name, define, or
characterize an internal field aggregate.

Internal record (Stored record)

An internal record is a uniquely identifiable
concatenation of related internal fields in the internal
model. All of the values of internal fields in an
occurrence of an internal record are stored in a
consecutive string of internal model space units. The
contents of an internal record occurrence are disjoint
from those of other internal record occurrences. An
occurrence of an internal field is completely contained
in one occurrence of an internal record. However, the
contents of an internal record type need not be disjoint
from those of other internal record types. A type of an
internal field may be contained in one or more types of
internal records.

The relationship among internal fields in an internal
record may be entirely arbitrary. For example, the
internal fields in one internal record may represent
different types of facts about one entity, the same type
of fact about different entities, groups of facts about
selections of entities, or other combinations. The
relationship is specified for internal data storage
organization considerations. that is, to reflect
economic rather than informational (physical rather than
logical) parameters.

Internal record is often called "stored record" by
others. It is not the same as "physical record" for in
common usage this term implies the actual recording on a
medium or volume of a internal record aggregate (block,
page). In this technical report, stored record is used
only for collections of data elements not integrated
into an internal data base.

Internal record aggregate

Internal records may be aggregated into blocks, pages,
etc., usually to reflect access strategies. Space
management, indexing, latency, sequence Or concurrency
of reference, are among the many factors that affect
access strategy. Ccongruence with (a portion of) a
conceptual record or a conceptual plex is a (rather
frequent) coincidence, when one of these is often

Page II-25

24

accessed in its entirety. There is no attempt to name,
define, or characterize an internal record aggregate.

Space extent

A space extent is a contiguous suballocation of address
space of monotonically increasing address numbers that
may contain zero or more occurrences of one or more
internal record types. It can contain internal records
from part of, from one, or from more than one form
extent. The definition of a space extent does not imply
its mapping onto any external storage medium.

The contents of a space extent are disjoint from those
of other space extents. An occurrence of an internal
field or internal record is contained in one space
extent. However, a type of an internal field or
internal record may be contained in one or more space
extents. An occurrence of an internal field or internal
record need not be complete in the space extent in which
it is contained.

Form extent

A form extent is a subdivision of an internal record-set
that may contain zero or more occurrences of one or more
internal record types. Fach internal record type has
the same internal record descriptor(s) throughout the
form extent. In a form extent, the properties of
internal data objects are the same for all occurrences
of the unit. If a property changes {e.qg, a
representation is scaled floating instead of fixed, an
internal field +type is deleted from the internal record
type -- the represented field is virtual instead of
redundant) then a new set of descriptors is written for
the same internal record types. wWhen any internal
record descriptor changes, this results in a new form
extent. Thus, within the same internal record-set, the
same internal record type may have concurrently
different descrirtors in different form extents. There
may be one or more form extents within the same space
extent, or the same form extent may be contained within
one or more space extents.

The contents of a form extent are disjoint from those of
other form extents. An occurrence of an internal field
or internal record is contained in cne form extent.
However, a type of an internal field or internal record
may be contained in one or more form extents. An
occurrence of an internal field or internal record need
not be complete in the form extent in which it is
contained.

Page II-26

Internal record-set (Data set)

An internal record-set is a collection of zero or more
occurrences of one or more internal record types,
associated with a particular system addressing scheme,
exhibiting a commwon internal data storage organization.
The contents of an internal record-set are disjoint from
those of other internal record-sets. An occurrence of
an internal record is conpletely contained in one
internal record-set. However, a +type of an internal
record may be contained in one or more internal
record-sets,

An internal record-set is a collection of one or more
space extents and form extents. It is the largest
object to which ancther object can be bound.

Depending upon the flexibility of the data base
management system, there need not be a one-to-one
correspondence between internal record-sets and external
record-sets., The external data in an external
record-set may be formed by vertical and horizontal
concatenations of portions of different internal
record-sets., That is, the sequence of external records
in an external record-set may be materialized from
sequences of internal records in different internal
record-sets (vertical concatenation); and individual
external records can be materialized from internal
fields in different internal records (horizontal
concatenation). Depending upon the control ovexr
conflicting access available in a data base management
system, more than cne external record-set may be opened
upon the same intermal record-set(s).

The internal data storage organizational components of
the internal wmodel (e.g., volume labels, internal
record-set labels, indexes, pointers, hash address
algorithms) are not defined here, but are 1listed in
Section IV.4.

Internal record-set is often called "data set"™ by
others. It is not the same as *physical f£file®" for in
common usage this term implies the medium or the volume
rather than the stored data. 1In this technical report,
data set is used only for collections of stored records
not integrated into an internal data base.

Internal data base

An internal data base is a single, disjoint, integrated,
named collection of internal record-sets described in
one internal schena. It is an enterprise controlleqd,
enterprise managed, computer processable, portion of the
enterprise's data Dbanks. It is the data that is
actually stored.

Page 1I1-27

25

Data bank

A data bank is the total collection of data known to be
in the enterprise. For the purpose of this technical
report it includes only operational, machine readable
data. It is a collection of online and offline internal
record-sets and data sets recorded on demountable and
nondemountable volumes. It contains internal
record-sets integrated into one or more internal data
bases, and data sets not integrated into any internal
data base.

Data sets may be unassociated with ary intermal data
base, if they are not defined in the internal schema to
be interrelated and under the control and management of
the data base management system. Examples of data sets
not in an internal data base include queues of source
input data, queues of sink output data, pages of virtual
memory, scratch data, checkpoints.

Page II-28

3 DATA INDEPENDENCE

pata independence is a capability of a data base management
system that insulates a user from interference with his use of
stored data. some of the factors that may interfere include, a
change to the representation, formatting, organization or
location of the stored data; other users unknown ¢to him
expressing requirements upon the same stored data that may be not
congruent with his; other users unknown to him sharing the same
stored data concurrently with him; or other users accidentally or
intentionally damaging the stored data upon which he depends.
Integrity of the stored data is a function of data independence
that is often overlooked. Neither usage nor raintenance of the
stored data can be independent of the enterprise's requirements.
pata independence permits each to be independent of each other,
while responding to the business requirements. Programs should
not be subject to impact of influences external to themselves.
Data independence insulates a user from the adverse effects of
the evolution of the data environment.

Data independence does not include the capability of a data base
management system to cope automatically with changes in the
program's algorithm, changes to the program's view of the stored
data, or (accidental or intentional) unavailability of stored
data. Programs are subject to impact of changes internal to
their logic or internal to their view of stored data. Data
independence does not include magic.

Data independence is not a fproperty of a data base management
system that merely provides alternate views of the same stored
data. Data inderendence is the property of a data base
management system that provides these views and preserves them
during the evolution of the data environment.

The necessity for data independence cannot be avoided by
attempting to establish and maintain compatibility; that is to
ensure that all changes and uses are “compatible with each
other." Data independence is not a discipline; it is a
flexibility.

The necessity for data independence cannot be avoided by "picking
the right way to organize the stored data, and it never has to
change." Change 1is inevitable. Data independence is not the
capability to avoid change; it is the capability to reduce the
trauma of change.

Data independence collaborates with data integrity and data
security as capabilities of a data base management system that
permits data to be insulated against users: they protect the
stored data against accidental or intentional damage. This is
essential to permit programs to be insulated from adverse effects
of other programs operating upon the same data.

Several characterizations of data independence to cope with
change are significant: the complexities of the mappings that
can be accomodated, and the dynamics of the changes that can be
accommodated. The complexity of the mappings involve such things

Page II-29

26

as change in length or of representation of a value; change of an
internal field from one internal record type to another; change
in redundancy or materialization algorithm; change in access path
(hashing, indexing, chaining, etc.) to a specific stored record.
The dynamics of changes involve such things as prohibiting
reorganization of stored data once it is committed to use,
requiring reorganizations to be completed before stored data can
be recomitted to use, permitting partial reorganizations while
stored data remains in use; permitting augmentation and
modification of external models defined wupon an unmodified
internal model, permitting evolution of external models
concurrent with evolution of the internal model.

The allocation of functions and groperties to the different
layers of the onion-machine and to the different schemas might be
a matter of taste, or it might be essential to the proper
operation of the enterprise. TIf all applications are designed to
work only on specific, predeterminate, bodies of stored data, and
if all the characteristics of these ,bodies of stored data are
always uniform and known in advance, then static binding, for
example, by a compiler, is satisfactory, and allocation of
functions and timing are not technical issues. However, if any
application is designed to work generically (on alternate,
substitutable, bodies of stored data), or if any of the
characteristics of these bodies of stored data may be varied
between reprocessings (recompilations), or may be non-uniform
over the body of stored data (form extents), then the capability
for dynamic binding is required. This capability is technically
very sensitive to the allocation of functions and timing among
the processors and schemas. For example, if a system does not
provide a function similar to operating system control statements
to name a body of stored data at execution time, then it becomes
very awkward to write parameterized, generic, applications.

The placement of the conceptual schema between an external schema
(or the manifestation of an external schema associated with an
executing object program, for example, a "data base control
block" associated with the invocation of the data base management
system for a specific operation) and the internal schema in the
path of interpretation, is essential to provide the 1level of
indirection essential to (static or dynamic) data independence.
Omitting the conceptual schema from the materialization process,
and binding the names and characteristics of objects described in
an external schema (objects known to an application) directly to
the names and properties of objects described in the internal
schema (objects as they are actually stored) has a specific and
predictable effect on data independence. Without the assistance
of the data base management system in coping with variations in
characteristics of stored data, it becomes awkward to write
parameterized, generic applications, or applications that can
survive inevitable variations in the characteristics of the
stored data.

There may be a population of aprlications that require no more
than static binding. static binding need not suffer tactically
or economically in a data base management system that provides
dynamic binding. A data base management system that provides

Page II-30

data_independence ensures that applications can continue to run,
albeit at reduced performance, if the stored data is reorganized
to accord other applications higher pexrformance. Such a data
base management system does not prevent one from rewriting and
retuning the old application to improve its performance at such a
time as economically justified -- immediately, later, or never.
pnless dynamic binding is accorded higher Fpriority in the
interest of the working group, dynamic binding can suffer to the
extent of total loss of that capability.

Several characterizations of data independence to cope with
sharing are significant: the granularity of <the body of stored
data that can be shared; the minimum quantity of stored data that
the data base management system permits to be protected or to be
held exclusively; the capability to identify granules by
properties as well as name; the automatic propagation of holds to
redundant or dependant stored data (including copies at different
levels in the storage hierarchy, multiple copies placed to reduce
latency delays, backup copies, indexes, etc.); addition of other
applications unknown to running applications that share the same
stored data, but not concurrently; addition of other applications
unknown to running applications that concurrently share the same
stored data; automatic monitoring for access only as authorized;
automatic monitoring for consistency and validity of stored data;
timing of publication of modifications of wvalues +to other
applications sharing the same stored data; capability to backout
one :pplication without undoing or distorting the results of
another.

There may be a population of applications the performance
requirements upon which prohibit unpreplanned sharing or
automatic monitoring. Carefully preplanned sharing and

exhaustive testing may be sufficient to satisfy the security and
integrity requirements of the entergrise on some applicationss.
A data base management system that provides autoratic monitoring
can be given fewer or no consistency equations to verify for some
applications or some portions of the stored data. Unless
automatic monitoring is accorded higher priority in the interest
of the working group, administrative control amy suffer to the
extent of total loss of that capability.

A more detailed discussion of data independence appears in
Chapter VIII.

Page II-31

27

4 DATA DICTIONARY DIRECTORY

The data dictionary/directory is a meta data data base. It is
the repository of informaticn concerning data base declarations,
data base object references by programs, usage statistics
concerning data access, security declarations and execution time
control structures required for recovery and restart. The data
dictionary/directory has many users, each of whom is interested
in particular garts of the data base. Many of these users have
been illustrated in the System Schematic number 1 (Figure I-2)
and are shown with specifically named and described interfaces by
which their special use is accomplished. Note interfaces 2, 5,
14, 348, 35, 36, 37, 38, 40 and 41. There is a potential for the
logical aspects of these interfaces to be reduced to one or
several logical record interfaces by which the records, fields,
plexes and record sets of meta data are accessed and manipulated.

The data base objects manipulated at this interface would be
records, fields, plexes and record sets which represent the
following;

. user program descriptions, stored by the program
preparation subsystems via interface 7
. mapping structures relating user programs and procedures

to the external data base object types which they
manipulate, stored by the program development subsystem
via interface 37

. external data base schema object type descriptions,
stored by the external data base schema processor via
interface 5

. mapping structures relating external and conceptual
object types, stored by the external schema processor
via interface 5

. conceptual data base schema object type descriptions,
stored by the conceptual data base schema processor via

interface 2

. mapping structures relating irternal data base and
conceptual via interface 2 stored by the internal data
base schema prccessor via interface 14 object types,

. internal data base schema object type description,
stored by the internal data base schema processor via
interface 14

L3 mapping structures relating internal data base object
types and the user programs which access them, stored by
the program development subsystem via interface 35

. execution time structures used to control recovery and
restart, shared access, and support accounting and
auditing requirements, stored by the data base
transformation modules via interface 34, 36 or 38.

Page 1I-32

. recordings.of data base object and object type usage
patterns, stored by the data base transformation modules
via interface 34, 36 or 38

. mapping structures relating internal gstorage and
internal data base object types, created by the internal
data base designer and stored at system generation time
via interface 40 and 41}

. internal storage object descriptions, stored by the
internal storage utility modules

. internal storage object type descriptions created by the
internal storage system designer and stored at system
generation time

. mappings relating internal storage and external storage
cbjects, stored by the internal storage utility modules

. external storage object descriptions stored by the
external storage utility modules

. access rights granted to persons to carry out specified
data base actions, stored by the authorized
administrators via interface 2, 5 or 14

. person descriptions (unless represented elsewhere in the
system data base}, stored by the authorized
administrators

. textual statements relative to the above descriptions
and maps

The data dictionary/directory data base is part of or related to
the system contrxol data base. The extent to which the parts of
the systems control data base are integrated is not of concern to
the data base prototypical architecture as 1long as specific
requirements are satisfied. However it is known that there must
be integration or duplication with the program preparation data
base as programs are recognized in the data dictionary/directory
data base. There must be some integration with the job
management data base as jobs, steps and processes are known and
related to the data base objects which they accees and update for
control of recovery and restart, shared access, and accounting
and auditing purposes. There must also be some integration with
the resocurce management data base as external storage media and
devices are recognized. Similarly, the system catalog knows the
names of schemas and record sets. If the message management
subsystem description of mailboxes (Queues), message types and
the procedures referencing both were available, then it would be
possible to 40 a complete data flow analysis from source to sink,
from original input to the system, through the system, in and out
of data bases, and to all real outputs.

Page II-33

28

Chapter IIT: GFNERAL DESCRIPTION OF THE MQDEL

The preceding two chapters have provided the frameuvork for a
general descripticn of the proposed model., This chapter provides
more detail hy stepping through several levels of the model and
describing the interactions among components at each level, thus
providing a .basis for the detailed descriptions of each interface
vhich follow in Chapter IV.

The following Adiscussion presents the model in three stagqes,
generally corresvonding to the three major phases in creating a
database installation: schema development, proqram devclopment
and program execution. The shaded zone of interest in Figures
III-1 through III-9 corresponds to the appropriate phase of
implewentation. Ffurthermore, each zone of interest is presented
in a series of steps, each building upon the previous step and

culmirating with the complete database system presented in Chapter

I, as well as in Fiqure ITII-0 of this chapter.

In Piqure ITI-) of this chapter, the shaded area represents
hardware-spacific interfaces not vwithin the scope of interfaces
being considered for standardization by this Study Group.
Therefore, the following description does not include discussion
of these interfacas. They are shown in the figures, however, to
establish the framework, and to provide continuity betueen
specific zones of interest.

1. Schena Development
1.1 Preparation of the Conceptual Schema {(Figure III-1)

Prior to undertaking the develooment and creation of a
database, it is necessary to have an understanding of the
environment in vwhich that database is to serve, Consequently, a
very important initial step is the characterization or synthesis
of the information needs within an enterprise., This includes
dstermining what information flows through the enterprise and hou
it is to be used. An important role of the enterprise
adAministrator is to perform this systems synthesis function, in
the context of the many applications utilizing the database.

In this capacity, the enterprise administrator serves as the
focal point for determining inforration use in an organization.

This function has the responsibility for deciding what information

is to he managed, and what security, inteqgrity, and availability
corsiderations are to te applied to this information; and, in
addition, describing the logical interdependencies among
information objects.
administrator is, in effect, describing a portion of a data
dictionary/directory. Hence, the end-product of the systems

synthesis function can be viewved as a "first-level" description of

the elements in a data dictionarv/directory.

Once the enterprise administrator understands the information

necds of the orqanization and has defined the uses, flow and

Iir -1

By performing these functions the enterprise

29

accessibility of the information, a conceptual schema is prepared
{in 2 “descriptive™ language) to serve as the information model of
the enterprise and as a control point for further database
developmaent., 1In this role, the enterprise administrator acts as
an interface between the opsrations within the organization,
gathering information to ultimately be delivered to the database
administrator to help solve performance problems, and to the
applications administrators to help implement application
programs.

When the conceptual schema has heen preparel, it is passed to
the conceptual schema processor for encoding into a computerized
form. The conceptual schema processor performs syntactical and
logical consistency checkXs on the information descriptions and
their relationships to surface inconsistencies in the conceptual
view described by the enterprise administrator, The conceptual
schema processor may store the conceptual schema description in a
conceptual schema library.

1.2 Preparation of Internal Schema (Pigure III-2)

Once the conceptual schema has been prepared and processed
{ané, perhaps, cataloqued), the database administrator has the
rescvonsibility for specifving an internal model (i.e., the
physical database) of the information represented by the
conceptral model. To perform this task effectively, the
administrator must determine usage requirements for, an
availability of, data for the applications competing for
rescurce. The internal model must reflect certain facts about the
environment in vwhich the database is to coperate. Among these are
questicns of: total system performance, timeliness of response,
and expected system load ~ all in a varying environment of
concurrent access. In addition, if programs are to be uritten at
the internal level, security and inteqgrity rules consistent with
the specificaticns in the conceptual schemwa must be specified in
the internal model., PFurthermore, the internal model addresses
implementation issues regarding access methods and techniques for
representing relationships. Resolution of these issues provides
the database administrator with the ingredients for specifying the
internal schema which the internal Schema processor converts into
a form that can be interpreted by the database managment system.
The internal schema may be stored in the internal schema library

database

this

by the internal schema processor,

1.3 Preparation of External Schemas (Pigure III-3)

various application programs utilizing an organization's
darabase are under the control of applications administrators,
Toaether ¥with the enterprise administratcr, the applications
administrators determine the ohjects of interest for each specific
class of applications. Each external schema may bhe used by one or
more application programs, In desiagning the external schema for a
snecific application, an applications administrator consults with
the other administrators to deterrine what data is available at
the internal level, It is the responsibility of the applications
administrator to interface with the applications (or systems)
proorammers to assist them in pregparing programs using a

The

Ut

YLLLER)
WWIHIS
._gj_uu:‘uu

h

¥05533084
WH3HIS
INLAIINGD

3

IIT

WOLVVLS INIWOY
ISIYINILING

YW3H3IS TVYNL43IINOI
40 NO|1lvivd3add

[-111 @inb14

e
A0Td YiVO AVA-OML

e
A0S YIVD AWA-3ING

Hivd AV1dSI1Q

NO1LINNS
INISSI0NG

AYVNE 1T)
uﬂ(/d\c»m

10N3933

[m——

¥0$$320%d
ONFddvm
TYALAINOD
~01-TYNYILNI

¥0SS3I08d
VW3NS
IYNIIING

VOLVULIS ININQY

IV vivo

INIddVW TYNLdIINOD

-01-TUNY3LNI

NV YW3HIS

TYNYILINI 40 NOJILv¥vd3dd
Z-111 ®4nbi4

I1T

L e
AOYS ¥iV3 AVA-ORL

—
AO0V4 vivd AWR-3NO

HiVd AVI4SH

Aigi

3

VN01s

NO1LIN0 4
MISSII0N

!

z

¥0S533084 J_ I
N1 ddvW
W¥31x3 —
~0L~TVN1d3IN0) \“ -
H [t}
)
|
TR "
WWaNHIS
WIi31X3 1
4 |
\\ !
) 1
’]
4 ¢
’ “
¥0553908d | A V
W3NS
vl 1
)
] ’
, V4
] ; 7
’
g —
._M.h.u.__ww%_.ﬁn« AOV4 VIVE AVA-ORL o"wwwﬂ_o“.
PP S ——
AOYS YiVO AWR-3N0
<o So?
INIddYW TVYNY3ILX3I Hiva AVIesi0 udv:
~01-TYNL4dIINOD ANV YW3IHIS
TYNY3LX3 40 NOjLlvyvd3idd
€-111 2.nb14

narticular external schema. When preparing an external schema,
sa“lication” alministrator may either use a descriptive Lanquaqe
<hich 1s proqgramming-languaqge independent, or a programming
driented language. To rnable application programmers to define
the data descripticn portion of their programs, the aexternal
schema is transmitted to them, perhaps indirectly through an
axternal schema formatter for convenience of the recipient.
axternal schema processor may store the external schema in an
axternal schema library, making it available for other application
proqramw.

t 1s important to note that
fzrent external views of the same
¥S may result in the creation of
t applic atlon.

an

The

different applications may have
database. Fach of theose
an external schema relevant to

oo
o5 g e
'1 l-i

b O o

1.4 Mappings Between the Conceptual Schema and the
Internal and External Schemas

abli corrasnondence between the conceptual sch
e nal schema, the d?tabase administrator specifics a
HL> mapping can be understood by the database system
slating conceptual- orlented selection requests into
-oriented access requests {see Piqure III-2). Similarly,
lications administrator provides mappings between external
and the conceptual schema (see Figure III-3) to help the
system translate external-oriented selecticn requests

an application program into conceptual-criented

-0

=)
b oy

i
t
3
d

$a
N

O w0
L o
= o

D Doty
N

(AR

mapping specifies the correspondence betwean objects at
levels of schema through: name association, rules for
information including data-type conversion,
recrdering, composition, truncation, encryption,
for materializing derived data. The means for
vyira and s2lecting individual occurrences of object types
specx‘xed. Additionally, rappings provide the
rrespondence betveen security and integrity rules in the
srective levels of schema. Mappings may be prepared separately
om schemas, vertaps using a level-specific descriptive mapping
n
r

Lot I A
O > oer

n o m
Dot

o+ 3
Lo S e)

e

~

etc.,

WD et
I
o)
a

K=

i1y
B B R

Dok T rh e

ja]
et
M k-

LRARES I BN ST <
DO w o

and processed by mapping processors independently from
These mappings could be used to generate the target
Alternatively, mappings could be prepared together with
hemas using a common schemas/mapping definition languaqge with
nsistency checking. The processed mapping will be stored in a
ibrarvy.

Not only do these independent descriptions allow each
administrator (i.e, enterprise, database, applications) to
describe a loqical view meaningful to his particular perspective,
bnt, more importantly, if the mapping processors are powerful
enough to permit flexibility, changes at a given level can be
ansorbed without changing descriptions at other levelg. This can
be achiaved simply bv redefining the mapping between levels,

It should be possible to prerare direct mappings hetween the
external dand internal schemas to gain the efficiency of one less
level of indirection when processing exte rnal requests, at the
expense of the additional deqrees of data independance provided by
the conceptual schema. Conceivably, mapping processors could

[CI

QO
POOI)O[U”

TTT - 7

33

determine a dircct External-to-Internal mapping by computing the
product of an Internal-to-Conceptual mapping and a
Conceptual-to-External mappirg.

2, Program Development

2.1 Program Preparation {(Figure III-4)

To prepare an external level proqram, the applications (or
systems) pregrammer must bave access to the appropriate external

schGNT defined for that applicetion bhv an azpplications

inistrator. fThe external schera is transwitted, ander sscurity
control, to the programmer, either indirectly through a schana
formatter, or Aairectly turouyh the source form of the external
schema, Given the exteranal schema, the pogrammer is prepared to

write a progqram for the reguired application

frograms may also he written at level other than the
exrternal level. lowever, the enterprise administrator may choose
to pronipit programs from opefating 2t any level other than the
external, since, to not do so, implies bvpassing higher lev:l
contrel points containing security and integrity information.
Lnother implication of writing programs at other levels is the
loss of data indeopendence resulting from programs being directly
bound tc the structures defined at those lover levels of
interface. Chapter VIII discusses- data independence in greater

detail.

Reqardless of the level at which a proqgram is written, the
source program produced for the application may be stored in a
source program library for execution at a later time.

2.2 Source to Object Conversion (Figure III-5)
The program development function receivaes the source program
from the library and translates it into object form. t may

utilize the external schema, perhaps reformatted by a schema
formatter, to bind data names and properties in the =2xternal
schema to the program at this point. If the external schema is
not available to the processor, data name and property birnding
occurs later. After translation from source to object format, the
object program mav be catalogued into an object program library.

2.3 Preparation for Execution (Figure III-6)

In preparation for execution, object program modules may be
bound to other modules and/ocr the external schema. Special
binding commands may be used to bind an object program module to
the other modules. Data names and properties in the external
schema may be bound to the obiject program by either the ohject
schema formatter or by the proqram ecxecution preparation function
(if the binding did not previously occur during the program
developmant function). If a specific application requires a
greater Aeaqree of data independence (at the expense, perhaps,
performance), data names may be dynamically bound at execution
time. A hound (or unbound) program may be stored in a bound
object program library until loaded for execution,

of

IIr - 4

3. Program Execntion {(Fiqures ITII-7,III-8)
surrounding framewvork are desiqgned to accommodate change more
economically.

At execution time, programs rake requests to store, retrieve
and modify data. These requests are executed by the database
management system using the proqram's data description which is
made available either through the schema library or ttirough the
proqram itself. Fiqures TII-7 and III-8 depict the stepuise
transformations of the request from the External level to a
devices/madia accens, Implementation does not necessarily require
these separate steps.

While requests are transformed through successive levels of
schema, data need not actually be materialized at each of these
levels, For example, a complete retrieval transformation may
transfer data from a disk sector to an internal storage page and,
from there, an external record may be prepared within a user work
area. Thus, while¢ descriptors may be traversed at each level of
interface, the data itself need net be materialized at each of
these levels, !

Fiqures III-7 and III-8 show dotted lines around the access
functions.

4. User Interfaces (Pigure III-9)

A datahase management system must support a variety of users
including: report specifiers, enquiry specifiers, database update
specifiesrs, parametric users (e.g. a bank teller), and operations
clerks {(i. e. rarametric users of svstems atilities), Each user
communicates to the system through application programs executing
at various levels of interface to the system. (Conceptually, in \
this model, vendors who provide self-contained database management
systems are, in fact, providing a variety of application programs
to fulfill these functions).

Se Database Evolution and Maintenance

The enterprise administrator must continually revise the
conceptual schema to track the changing uses of information within
the enterprise. Generally, changes to the conceptual schema
perreate the database environment causing schemas, mappings,
programs, and the database itself to be modified.

More frequently, however, the information usaqge of the
enterprise as synthesized in .the conceptual model may remain
relatively stable while the internal and external environments
require change: to absorb new hardwvare and/or software systems,
to re-optimize or restructure the database for efficiency
purposas, to inteqrate new programs (or entire application
systems), to restore, reformat or reload the database. ®hile the
conceptual schema is sensitive to business cycles,
diversification, mergers, new interests and other dynamics of the
corporation, it is likely to remain more stable than either the
internal or external models; hence, internal and extecnal schemas
are prepared aqgainst the relatively stable conceptual model rather
than against each other, in order to insulate one from the other,

Although the proposed model does not specifically resolve the
problems of a changing environment, the conceptual schema and its

34 .
TIT - 12 IIT - 14

g¢e

¥ILIWNO04 WeLX3
WIS / u

¥0$53304d
4 WWIHIS
/7 TvNLX3

() -

9

IIT

Y3INWVYI0¥d
SWILSAS ¥O
NO1LYIIddY

——ep

YOLVULS INIWAY 014 VIVD AWA-OAL

SNOI LYY VddY

NOILINNS
IMisSIIoNd

D
A0S YiVQ AVR-3NMO

€---m-==-- ”Esa "
Kivd AV1dS10 FETTY

R FER

SWYH4I0¥d 40 NOIivdvd3dd
=111 9anb14

WYHO0Ud
2340
NOILINA
LMIH4011A3A xuﬂ“xuou
We508d ~ - HIS

AdVYE 1T
WYu90ud 339N0S

Y3WWYYI0Yd
SWILSAS YO
NO 1191 ady

ANYY91 T
VHIHIS
TNgaLxi

LINIWJ0TIAIA WYHHOYUd
G-111 @4nbi14

i
i
—
H
—
—
N NO1LINNS
#0134 VIVQ AvA-OAL oK1553304d
—————— e,
A0T4 VIVA AVR-INO
€-"-mmm=-- AWVVE 1Y
HYd AVYdSIQ wuﬂx\o:
GNIII

W1450¥9
ok (a
\ ’
T
NOILVHVd Y YILLWWE03
KOL1023X3 YHIHIS
WYu904d 133re9

/33:\7
\SVo

)

11

ITT

)

———
A0Y4 VIVG AVR-OAL

—
AOVS ViV AVA-INO

Hivd A¥4S10

NO{1NJ3X3 Y04
SWYYI0dd INIYVJIYd

9-11} @24nbi4

01 19NN
INISSII0N
Auvugin 1708 \
39ve0Ls L1}
/\ NOSUIe

w4904 X '
NOI LVO | 1ddV ;
RIS

NOLLINNS NOILINNG NOILINNG NOI LINNS NO1LINNS
NOILVWHOASNVYL [ME——%= G| LYWN0JSNVHL NOJ LYW¥OISNYYL NO I LYWHOISNVHL NO ! LYWY0ISNVY L
$1-01-§3 $3-0L-WN103M [

Y

13

I1T

,a
ROV4 YLIVQ AVA-OmL u"ﬂmww“v_“;
-
AOV4 VIVQ AVA-INO
€meooane- S
Hivd AVIdSHD I9VH04S
SWYUH0Yd TIATT-TYNYILX3 \Y

40 NOILNJ3X3
L-111 24nbi4

(4n3911

WY¥903d
NOELYIINddY
IYNE3ILX3

|

HYY0%e
RO LYY YadY
TUNYILIN:

6t

WYYO0u4

! NO11v311ddY
JOVYOLS
TYNYILNL

X *l/v\ N] /
o

WvysCud
LIPLAIREY S

297ul.S

TNE2L

NOFLYWHOSSNVEL

NO | LYWHOASNVYL

NO) LINN NOILINNS

NOILYWHDISNVY L

NGILINRS

3

NO I LYWHOJISNYYL

NOtLINNS

NOTLYWEOISNYY)L
3-04-1 $1-01-53 S3I-0L-WNiQIW
||||||||||||||||||||| ittt T
0000000 000°0.0 000000000 see
=
]
-
-
-
4 —
ROYJ ViV AVA-0AL ortivil
— e
AQT4 VIVA AVA-INO
, e o
FIVAYIING 40 STIAIT SNOIUVYA \/
1V 9NILNJI3XI SWYYIOHUd
8-l 24nBy 4 T

oy
S NEy
o -

-

!

wWygSlya
NOt1YD1Tdd¥
RLLUEREE]

WY8904d
NOTLYITddY
IYRYILNIT

43sn
#7830%d W8I0y d
NC12%)1 0 ddy NO11YI1TddY
IVeTLs 39VHOLS
\ RALEIL TYNYILX]

w G
3TVeis
Teae3lel

JoV4Y3ILNI ¥3SN aN3
6-111 24nb14

——————>

AOY4 VIVG AVA-OML

-—
MOYS YIVO AWM-3INO

HiVd A¥4SIC

MO1 1IN
INISSII0NY

ANVE 11
39vu01s

1M1

TABIE OF CONTENTS

IV: INTERFACES scccvccccscoccscccsnnscccnsnoncsasssanasonsne
General Notes on Conceptual Schema (Interfaces 1, 2, 3) ...
Conceptual Data Description -- Source format (1) eccccenssece
Conceptual Data Description -- Object format (2) .ccccoece-e
Conceptual Data Description -- Display format (3) e.cccec..
General Notes on External Schema (Interfaces 4, 5, 6)
External Data Description -- Source format (4) c.ecccecceee
External Data Description -- Object format (5) ececccecese.
General Notes on External Schema FOImatter .ceeceecececssass
External Data Description -- Host language format (6)
External Data Manipulation Language -- Source format (7) ..

General Note on End User Facilities (Interfaces 8, 9, 10,

T1) ceccnencanatacassstsasccsanssssascsnssnossansssscnanse
Report Specification Language (8) sceesvesccscscscccccrcnee
Enquiry Specification Language (9) ecececceccccsccnccannaces
Update Specification Language (10) ..ecececccsnccccsccsccans
Parametric Interface (11) c.cecvcersccsasesasaccssvcacosnannn
External Data Manipulation language -- Object format (12) .
General Notes on Internal Schema (Interfaces 13, 14, 15) ..
Internal Data Description -- Source format (13) .ccciacecces
Internal Data Description -- Object format (18) cccececcnn.
Internal Data Description -~- Display format (15) ...cue....
Internal Data Manipulation Language -- Source format (16) .
Internal Data Utilities -- Control language (17) «..cccce-..
Internal Data Manipulation language -- Object format (18) .
General Note on Storage Management System Interfaces

Page IV-TOC-1

Iv-1

Iv-2
Iv-32
IV-36
Iv-38
Iv-41
IvV-60
IV-63
Iv-65
IV-68

Iv-70

wv-71
wv-71
Iv-71
Iv-71
Iv-72
Iv-72
wv-73
Iv-103
Iv-111
IV-116
Iv-122
Iv-122
Iv-122

Iv-123

41

Internal Storage Type Description -- Source format (19) ...
Internal Storage Utilities -- Control language (20) <......

Internal Storage Manipulation Language -- Object format

(21) cecccececnsecacssannanssnnrsestoncssacaasssasanscons
External Storage Type Description -- Source format (22} ...
External Storage Utilities -- Control language (23) <.c.cee

External Storage Manipulation Language -- Object format

(2U) ceuecconcscacscasscescceaonncasnasannsnssssnaannss
Storage Device Type Description --ISOurce format (25) ...-«
Storage Device Manipulation Language -- Object format (26)
Materials Description {(27) .eeecccecccccsecssacssccnsccsscnse
Materials Manipulation (28) .secceacccesncececccscscacacass
ok Rk Aok o AR kR KRR R 3RO Rk Rk KRRk Rk kR kR Rk (29)
Internal Data Manipulation lLanguage -- System format (30) .
Conceptual Data Manipulation Language -~ System format (31)
ook AR Ak ok ok kR AR Rk ok Kok Ak Aok ok Rk KKK kR R KRR Rk KRRk (F2)

Data Base Management System Object Type Specification
Lanquage -- Source format (33) <iecccccciiicnncnnencne

General Note on Data Dictionary/Directory Interfaces

Internal Storage/Internal Data Transformation Module
Dictionary Interface (38) .sceeccecrsccrncesccoacscscanns

Internal Program Dictionary Interface (35) ...ccecencecenes

Internal Datasconceptual Data Transformation Module
Dictionary Interface (36) ..ccceccercccccvacsesccccnncann

Conceptual Data/External Data Transformation Module
Dictionary Interface (37) c.cccevcescccaccarssnsccncmonss

External Program Dictionary Interface (38)ccecenccee
Data Base Transportability Interface (39) ...ccccccveccnces

Data Base Management System Object Type Specification
Language -~ Object format (U40) .ccceceeccecccccccncances

Internal Storage Type Description -- Object format (41) ...
Figures IV-1 through IV-56 «.ccccecerescoccncccnccctcacnacas

Page IV-TOC-2

Iv-123

IV-123

IVv-123
Iv-123

Iv-123

Iv-123
Iv-123
Iv-123
Iv-123
IV-123
IvV-124
IV-124
IV-124

IV-124

Iv-124

Iv-125

Iv-125

Iv-125

IV-125

Iv-125

IV-125

-IV=125

Iv-125
Iv-125

IV-66

CHAPTER IV: INTERFACES

Chapter IV contains detailed descriptions of the
identified in System Schematic number 1.
in style, degree of completion, and level of review by the
group.

Page IV-1

interfaces
These descriptions vary

study

42

GENERAL NOTES ON CONCEPTUAL SCHEMA (INTERFACES 1, 2, 3)

1 Purpose of the Conceptual SChemMa ...cecrivaccrcccsonscnen
2 components of the Conceptual MOAEl ..cceieeecracnscnanas
2.1 Conceptual Schema feescscncecscecnscscennsas e sensasse
2.2 Motivations for the Conceptual Schema .c.ceecacwcscacass

2.3 objects Defined in the Conceptual Schema ..c.eceveccne
conceptual field (Attribute) ..ececeveccccecesecses
conceptual gYOUP ..ccetcecocsonccssemcacscnsnncacas
conceptual record (Entity record)sceececessas
conceptual PleX .ccvceccacscsccscctsvacntancncsnnes
conceptual record-set (Entity record-set) iev.....
conceptual data DasSe c..ceececrecccescrcccsscnanas

3 1Interfaces Using the Conceptual Schema c.cccevcecccnceenn

3.1 Application Administrator

Application Programmer

APPlication USEY ceececeerccececsencnsnencccscscscncnns

1 Browsing the Conceptual Schema ..ceccescccecssccnocas

2 Extracting Subset of Conceptual Record-set
pefinition for External Record-set Definition

3 Binding External Record-sets to conceptual
RECOYA~SEtS .ovevesencsocnsncscacsesacsosoasessacncane

Enterprise Administratorcccecececccacncccacasnnnne
1 Defining the Conceptual SChema ..ccececcscsssssscaae
2 Protecting Internal Lata c.mcsescescsacoccescccncanse
3 Controlling Conceptual Data Content and Usage ¢.....
4 Interacting with System ...c.icuicececanscccssnnncnne

4 Declarations for the Conceptual SChema e.eccececencsncscs

4.1 Application Administrator

Application Programmer

Application USer ..cceccescacscsacaccscsnacccacenmsncosne

. self identification, authentication (extralingual)
Display manipulation ...eecececccceccocccccsasoancs
component selection teiceieccssccctonacrsosncnscacne
Name equate Binding ...ceccecececncecsacccnecnnnce

4.2 Enterprise AAmInistrator ciecececescccccocccccsococaes
self identification, authentication (extralingual)
Display manipulaticCh c.ecesccscncsssascnscsvoncanee
ASSOCiations (SEtS) ceeecvcccecccccaccssscsncennen
SLYUCLUYES cevceosncecccoscnsosnnnwossascccsscnsssacs
COMPONENLS cceesancesnsscrscscccscnanansncsvsocmancnna
Nominal bindingsS ..eeececnccsccvaccansscansmensoos
Transaction validation rules ..eeceececcvacancensscs
Cross domain consistency equations ...cceeccescsces
Sphere Of CONtYOl .suceceecscaceccccccassccacnusnans

Page IV-2

Iv-4
-6
Iv-6
Iv-7

Iv-8
Iv-8
iv-9
Iv-9
Iv-12
Iv-12
Iv-13

IV-15

Iv-15
Iv-15

Iv-15
Iv-17

Iv-17
Iv-17
Iv-19
Iv-21
Iv-23

Iv-24

Iv-24
Iv-24
Iv-24
Iv-24
Iv-24

Iv-24
Iv-24
Iv-25
Iv-25
Iv-25
IvV-26
Iv-29
Iv-29
Iv-29
Iv-29

Display Qefinition ccceeeeeeescencnssccconcacsnnee
Retention requirementseceecececssacecnnssnan
SOCUYIitY tocetnecncacacrecnsiennsscncacacennoacana
AAMIinisStrative seciiseeisececscacecacacocccanconna
OWN-code ProCedUreS «..vceesccsssnsacacacsoncncane
Subauthorizations over subsets of conceptual
SCHEMA cevvecacncecacancsnanasoncenaescancecanscnen
CONtYOLlS tiuueceervannccenoacsonsascscamenanssnens
AUdit trailS .ceceveencesacccrracncccaccarcnnannas
ReCOVery proceduresS ceceevecccsasasssacscsnaccnans

Page IV-3

Iv-29
Iv-29
Iv-29
IvV-30
Iv-31

Iv-31
Iv-31
Iv-31
Iv-31

1 PURPOSE OF THE CONCEPTUAIL SCHEMA

43

Provide the description of the conceptual model of (that
portion of) the enterprise's information.

Provide a stable platform to which applications may be

bound.

Provide a stable super-model of application external
data models, vrperwmitting additional canconical external
models or application's external models to be defined or
existing canonical external models or application's
external models to be modified or augmented, without any
impact upon the internal schema.

Isolate and insulate application external record-set
structure (external schema) from internal record-set
organization (internal schema), permitting modifications
and (partial) reorganizations within the internal schema
to be invisible to an external schema.

(The above three purposes can be satisfied within the
constraint that external data required by an application
can be materialized from internal data contained within
or derivable frcm and is not physically deleted from the
data base.)

Separate information-oriented specifications (conceptual
schema) from econcmic-oriented considerations (internal
schema) .

Provide a mechanism of control over the content of the
data base

] admissibility, retention, discardability
constraints (legal, contractual, operational)

o integrity (intereffects of operations {live,
training, gaming); sphere of control (when and to
whom a change becormes visible); validity of
operands; currency, correctness, consistency of
conceptual data).

Provide a mechanism of ccntrol over the use of the data
base

o protection against abuse or misuse (this does not
imply protection against malfeasance or disloyalty

Page IV-4

of persons otherwise qualified to use the
conceptual data)

n security, authority, responsibility, authorization

a display to' those authorized the descriptors as
authorized only

[+ permit binding of an application to the conceptual
data as authorized only.

As a tool for definition, control and binding,
conceptual record-set descrigtors exist in the
conceptual schema, and are used and displayed by the
system; however, no population of conceptual data
exists.

Page IV-5

44

2 COMPCNENTS OF THE CONCEPTUAL MODEL

Objects in the real world are described by specific facts that
are abstracted from the nature and character man imputes to these
things. To represent these facts, conceptual data is gathered
into a conceptual model, and is represented by internal data,
data physically stored in a data base. Conceptual data in an
enterprise is defined and related by the laws, contracts,
policies, conventions, =-- the context in which the business is
managed and operated. The enterprise administrator collects
these definitions and relationships, and constructs the
conceptual model including the conceptual data that represents
the enterprise's facts. ‘The conceptual data in the conceptual
model (that can be materialized from internal data) is defined
and structured by the enterprise administrator so that the
conceptual data can be utilized by the various applications that
require the conceptual data, among other reasons.

The conceptual data that represents the enterprise's information
can be classified by the enterprise administrator as natural or
derived. That is, by a careful analysis of the dependencies and
of the interrelationships that exist among the entities and among
the components of the entities, the enterprise administrator can
select a complement of components of conceptual data that are
elementary with respect to the collection of conceptual data.
and can call this the natural data. The conceptual data that can
be derived from the natural data can be called the derived data.
To some extent the classification is arbitrary. For example, of
the three conceptual fields, gross, net, taxes, any one of them
can be selected to be derived; however, of the two conceptual
fields, date of birth, age, the latter is a far better choice to
be derived. Conceptual records containing only natural data can
be called natural conceptual records. Conceptual records
containing data derived from natural conceptual records
(redundant data is derived by a very simple algorithm) can be
called derived conceptual records. Conceptual records with
compound keys (intersections) can be called derived. Natural and
derived conceptual data are logical classifications, and need not
be congruent with stored or virtual internal data. Redundant
conceptual data can be materialized from internal data that is
not stored redundantly. The enterprise administrator may find it
useful to alternate the classification for particular conceptual
data. That conceptual data is classified as natural or derived
is not visible through the conceptual schema, or data
independence is lost.

2.1 CONCEPTUAL SCHEMA

The conceptual schema contains the descriptors cf objects. that
are components of the conceptual model of {that portion of) the
enterprise. While there is one conceptual schema describing one
conceptual model that can be materialized from internal data
collected and stored in one data base, the conceptual schema may
also include descriptors of objects for which no internal data is
collected. There are two reasons for this. First, there is an
orderly process of irplementing and augmenting ‘a system.

Page IV-6

Descriptors can be added to the conceptual schema before
corresponding descriptors are added +to the internal schema.
Obviously, it would not yet be possible to write mappings.
Descriptors may exist in both schemas before any internal data is
collected. second (and this is not distinguishable from the
first), descriptors can be added to the conceptual schema of
conceptual data that is not intended to be computerized (at least
not in the planned future). These descriptors are intended to
document, to publish, and to set into context, the existence of
that non-computerized conceptual data. The set of objects
defined here are components of the conceptual model defined in
the conceptual schema.

In general, it is anticipated that descriptors of conceptual
objects can be nested -- that is, more complex objects can be
defined in terms of associations and structures of less complex
objects. The 2least complex conceptual record can be called
"underlying conceptual record"; for reasons of data independence
it is useful that these wunderlying conceptual records be not
displayed to users or be not bound to by applications. See the
discussion of stability of conceptual records below.

2.2 MOTIVATION FOR THE CONCEPTUAL SCHEMA

There are several motivations for defining the conceptual schema
and constructing the conceptual model including the conceptual
data representing the facts about (that portion of) an
enterprise. One is for the existence of the model itself, as an
aid to the documentation of and understanding of the conceptual
data in the enterprise. The derivation of +the model is an
exercise in planning and analysis: a study of the topology,
morphology, and pathology of the enterprise. Another is to
provide a mechanism of control over the use of the conceptual
data. Perhaps the most important function is to preserve the
investment in programs and stored data by providing stability for
the inventory of existing application programs and end-user
processes, in the face of inevitable change to the enterprise's
policies, practices, conceptual data requirements, and internal
data storage technologies.

This stability to existing programs despite change to the
representation, internal data storage organization, access paths,
etc., of the underlying internal data is provided by a quality of
sophisticated systems called data independence. Data
independence is achieved by binding application external
record-sets to (stable) -conceptual record-sets, and by mapping
conceptual record-sets to (less stable) internal record-sets in
the internal model. The data base management system can provide
static data independence by resolving descrirtors at program
production; the data base management system can provide dynamic
data independence by resolving descriptors during program
execution. Dynamic data independence is necessary if internal
record-sets can contain different form extents, that is, if
different portions of internal record-sets can conform to
.different sets of descriptors concurrently, if internal
record-sets can be partially ccnverted, reorganized, or retuned,

Page IV-7

45

and if change can be made while operations continue (without
quiescing all operations, making the entire required conversions
to programs and to internal data, and then resuming operations).
Thus the descriptors, in the conceptual schema perform an
essential, real time, function in the operation of an
enterprise's information processing system.

2.3 OBJECTS DEFINED IN THE CONCEPTUAL SCHEMA

None of the objects that are components of the conceptual model
exist. 1Internal data is stored in internal records in internal
record-sets. Conceptual data is materialized from internal data
for each application in external records in external record-sets.
There is no motivation +to materialize "“occurrences" of any of
these objects. However, to talk about rules in terms of values,
about consistency rules, complex security statements, binding to
subsets of a porulation, among cther things, it is necessary to
talk about "occurrences" of these objects. The objects defined
in the conceptual schema are not disjoint, in that the same
"occurrence® of a conceptual field may be in more than one
conceptual record, the same "occurrence® of a conceptual record
may be in more than one conceptual record-set. The term
"occurrence®™ here is used in sense of association with a
particular entity; as conceptual objects do not exist, an
"occurrence" has no embodiment or materializationm.

The enterprise administrator defines the conceptual data and
structures that are to be used by families of applications, and
that are to be serviced by the data base management system, in
terms of these objects. These definitions are independent of any
particular internal data storage organization or access method.
These objects are defined only so that descriptors of them can be
defined. The descriptors are manipulated, while the objects they
describe are not. Thus the descriptors are the tools of the
enterprise administrator in defining the conceptual model of the
real world in the data base, in defining interfaces, and in
preconditioning the data base management system. These objects
are displayed to wusers and are bound to by applications. Thus
these objects are the tools of aprlications in relating to the
real world as modeled in the data base. In this sense, the
conceptual data is needed to operate the enterprise, and not to
operate the computer, and the conceptual schema is used to define
the conceptual model of the enterprise, and not to define the
model of the stored data in computer storage.

. Conceptual field (Attribute)

A conceptual field is the smallest named conceptual data
object that represents an idea or a fact about an
entity. As a conceptual field is not materialized, it
has no £8#mat or picture; i.e., there is no particular
length,%bit pattern or character pattern for the value
of a conceptual field, nor relative position or layout
of conceptual fields in a conceptual group or a
conceptual record. A conceptual field is defined by its

Page IV-8

role and domain. The value of a conceptual field
represents an algebraic or boolean quantity or some
symbolic quality. The value of a conceptual field is
atomic; if it is further subdivided, then it cannot be
assigned a meaning. If a value is nonatomic, then it is
the value of a ¢onceptual group. A conceptual field is
the object that is modified when a value is changed. A
conceptual field has a name, a descriptor, and a
population of occurrences.

A conceptual field is the object to which an external
field is bound.

conceptual field is often called "attribute® by others.

"Field" is not used in its mathematical sense.

Conceptual group

A conceptual group is a named association of or
structure of zero or more conceptual fields and/or
conceptual groups. These conceptual fields or
conceptual groups may be of one or more types. A
conceptual group may be composed of a fixed or variable
number of conceptual fields and/or conceptual groups.
The contents of a conceptual group need not be disjoint
from those of other conceptual groups. A type or
occurrence of a conceptual field or a conceptual group
may be contained in zero or more conceptual groups. An
occurrence of a canceptual field or conceptual group is
complete in any conceptual group in which it is
contained. A conceptual group has a name, a descriptor,
and a population of occurrences.

conceptual fields are collected into conceptual groups
for one of two reasons: either to provide an
association of conceptual fields that are addressed
together, that provide a complex meaning (e.g.,
month,day,year as date); or to provide a vector or
indexable array of multivalued conceptual fields or
conceptual groups (e.g., an array of the conceptual
group: month,sales,prior 12-month running total}).

A conceptual grour is the object to which an external
group or external record may be bound.

"Group" is not used in its mathematical sense.

conceptual record (Entity record)

A conceptual record is a named association of or
structure of zero or more conceptual fields and/or
conceptual groups that represents an entity. These
conceptual fields or conceptual groups may be of one or
more types. A conceptual record may be composed of a

Page IV-9

46

fixed or variable number of conceptual fields and/or
conceptual groups. The contents of a conceptual record
need not be disjoint from those of cther conceptual
records. A type oxr occurrence of a conceptual field or
a conceptual group may be contained in one or more
conceptual records. An occurrence of a conceptual field
or conceptual group is complete in any conceptual record
in which it is contained. A conceptual record is the
object that 1is logically stored, retrieved, or deleted.
A conceptual record has a name, a descriptor, and a
population of occurrences.

A conceptual record contains the conceptual data
representing the facts defined to be known about a
specific entity. ©Each entity has an identity; therefore
each conceptual record has an identifier, such as
employee number, state npame, or perhaps an arbitrarily
assigned system identifier.

A conceptual record is the object to which an extermal
record or external plex may be bound.

A construct of conceptual records can be defined. Some
or all of the conceptual field types in a conceptual
record type may be combined with other conceptual field
types in an independent interrelationship that
represents another entity (type). For example, the same
3.98 is the cost of a thing, the arount of a sale, the
debit to an account. If this construct is named, then
it becomes another conceptual record type. A conceptual
field type that was an identifier in one conceptual
record type need not be an identifier in another with
which it is associated. Thus the same conceptual data
may have a network of defined relationships and may
appear in a multitude of conceptual records. Some
relationships may remain undefined ~~ it may be policy
that these relationshigs be undefinable.

A conceptual record may be of arbitrary complexity, such
as an IMS data base record. It may include intersection
conceptual data, associated conceptual data, redundant
conceptual data, that may improve the usability, if not
the clarity, of the conceptual data. A conceptual
record is defined without consideration for
addressability. That is, the descriptor is for the
complete structure, without regard for segmentation.
Repeating groups are not distinguishable from repeating
segments or repeating members; in a conceptual record
they are all represented as repeating conceptual groups.

In general, it is anticipated that descrigptors of
conceptual objects can be nested -- that is, more
complex objects can be defined in terms of associations
and structures of less complex objects., The least
complex conceptual record can be called "underlying
conceptual record”; for reasons of data independence it
is useful that these underlying conceptual records be

Page IV-10

not displayed to users, Or be not bound to by external
records or external plexes; for the sanity of the
enterprise administrator it is useful that these
underlying conceptual records be of "third normal form."

The most significant fact about a conceptual record type
is that its definition is stable. once defined, the
definition lasts as long as it is used; because the
definition is not modified, existing users of it are not
disturbed (in general, it can be augmented without
disturbing any existing users). If a different -- even
slightly different -- definition is required for a new
application or for a modification to an existing
application, then another conceptual record type is
defined (possibly represented by the same internal
data), maintaining the original definition of the pre
existing conceptual record type unchanged. Change in
the structure of the environment being modeled: the
enterprise's organization, the business policies, the
financial, auditing, accounting principles, the
operating procedures, etc.; is accommodated by defining
new conceptual record types and mappings as required to
model the new environment. The mapping of existing
conceptual records from intermal records is modified if
the change in environment resulted in a change to the
internal model, as well as a change to the conceptual
model. The definition of existing, exposed and
committed conceptual record types need not be modified
if a mapping from the internal data can be constructed
that preserves the validity of existing applications.

Generations of maprings may need to be maintained, to
traverse different form extents, or to traverse
historical internal data as it was then viewed.

It is desirable that it be possible to define a
conceptual record canonically. That is, to define it in
one declaration, with the conceptual schema fprocessor
having the ability to display the descriptor in any of a

number of equivalent structures, and the
internal-external transformation function having the
ability to present an foccurrence" {actually, an

external record bound to it) to an object program in any
of a number of equivalent structures. Obviously, it
should be possible as well to constrain the conceptual
schema processor from displaying a conceptual record
description to an individual in a structure not
authorized to him, and the internal-external
transformation function from presenting it to an object
program in a structure not authorized +to it. If the
capability to define a conceptual record canonically is
not invented, then it will be necessary to define a
conceptual record separately for each structure in which
it may be displayed and to which it may be bound.

conceptual record is often called "entity record" by
others. Another meaning of entity record, implying

Page IV-11

47

unstructured (third normal form) record rather than
intermediate in a definition and materialization
process, is also in common usage.

conceptual plex

A conceptual plex is a named associaticn of or structure
of zero or more ccnceptual records and/or conceptual
plexes. These conceptual records or conceptual plexes
may be of one or more types. A conceptual plex may be
composed of a fixed or variable number of conceptual
records and/or conceptual plexes. The contents of a
conceptual plex need not be disjoint frcm those of other
conceptual plexes. A type or occurrence of a conceptual
record or a conceptual plex may be contained in zero or
more conceptual plexes. An occurrence of a conceptual
record or conceptual plex is complete in any conceptual
plex in which it is contained. A conceptual plex has a
name, a descriptor, and a population of cccurrences.

Conceptual plexes may be of different constructs; for
example, a data-structure-set or an IMS data base
record. Conceptual records are collected into
conceptual plexes to provide a vector or addressable
array of occurrences about a subject for which a
commonality has been defined (e.g., the various
educational achievements of an individual, the various
components of a part); the conceptual plex acts as a
reference mechanism.

since a conceptual record can be as complex as many
plexes, and since addressibility is not a consideration
of the conceptual model, substitution of a definition of
a conceptual record for the definition of a conceptual
plex (or vice versa) is a matter of taste for the
definer.

A conceptual plex is the object to which an external
plex may be bound.

Conceptual record-set (Entity record-set)

A conceptual record-set is a named association of or
structure of zero or more conceptual records and/or
conceptual plexes that represents a set of entities.
These conceptual records or conceptual plexes may be of
one or more types. These conceptual records or
conceptual plexes wmay be of one or more types. A
conceptual record-set may be composed of a fixed or
variable number of conceptual records and/or conceptual
plexes. The contents of a conceptual record-set need
not be disjoint from those of other conceptual
record-sets. A type or occurrence of a conceptual
record or a conceptual plex may be contained in one or
more conceptual record-sets. A concertual record-set

Page IV-12

can be defined over a subset of ancther conceptual
record-set. A conceptual recoxrd-set can be defined over
all occurrences of one or more conceptual record types,
some occurrences of one cr more conceptual record types,
some combination of occurrences, etc. BAn occurrence of
a conceptual re¢ord or conceptual plex is complete in
any conceptual record-set in which it is contained. A
conceptual record-set is the object that is opened or
closed, and it is the largest object to which another
object can be bound. A conceptual record-set has a
name, a descriptor, and a population of one or more
occurrences (generations, versions, etc.).

A conceptual record-set contains the conceptual data
representing the facts defined to be known about some
set of entities (not necessarily similar entities). It
can constrain the populatioh eligible to be associated
in the set. It can constrain the orderings among the
population.

A conceptual record-set is the object to which an
external record-set is bound.

Cconceptual record-set is often called "entity
record-set" by others.

Conceptual data base

A conceptual data base is a named collection of zero or
more conceptual record-sets defined in one conceptual
schema. These conceptual record-sets may he of one or
more structures. A conceptual data base may be composed
of a fixed or variable number of conceptual record-sets.
The contents of a conceptual data base are (nominally)
disjoint from those of other conceptual data bases. An
occurrence of a conceptual record-set is contained in
one conceptual data base. BAn occurrence of a conceptual
record-set is complete in the conceptual data base in
which it is contained.

A conceptual data base contains the conceptual data
representing all cf the facts defined to be known about
{(that portion of) the entergprise. It is coterminous
with an internal data base in that all of the conceptual
record-sets defined in one conceptual schema refer to
only the internal record-sets defined in one internal
schema, and all the internal record-sets defined in one
internal schema are referred to by only the conceptual
record-sets that are defined in one conceptual schema.

The conceptual schema may also include descrirptors of
conceptual record-sets that do not refer to any internal
record-sets in the internal data base; that is,
representing which internal data is not collected. It
is possible that a conceptual record-set is defined that
duplicates the definition of a conceptual record-set

Page IV-13

48

representing which internal data exists in another data
base. Neither the conceptual schema processor nor the
data base management system can diagnose this situation,
nor can they provide any automatic function or control
over this (apparently) non-existent internal data.

Page IV-14

3 INTERFACES USING THE CONCEPTUAL SCHEMA

This section describes the conceptual schema processor,
presenting different interfaces to different "individuals" for
different families of interrelated functions. It describes each
of the families of functions, how the processor interacts with
the individual, and how the conceptual schema is used in that
interface.

It is assumed that the interface is different, rather than a
different type of transaction at the same interface, for it is
assumed that the conceptual schema looks different and the
processor reacts differently to stimuli at each interface.

3.1 APPLICATION ADMINISTRATOR
APPLICATION PROGRAMMER
APPLICATION USER

This interface is used by an aprlication administrator to define
an external schema. It is used by an application programmer to
define a program's external data declarations. It is also used
by an application user to define customizing external
declarations.

3.1.1 Browsing the Conceptual Schema

The processor displays a portion of the conceptual schema to the
application/individual (right to know, need tc know, relevant to
the application, etc.). The user can determine if conceptual
data he needs is available to him, if it is represented by
internal data, and how that conceptual data can be obtained. A
conceptual record-set is defined so that it is relevant to one or
more application families, and the display is of a portion of the
descriptor that is appropriate to the application or individual.
The syntax of the display is appropriate to the application or
individval (e.g., in a COBOL declaration, in a Bachman diagram,
as an accountant's form).

Those portions of +the conceptual schema declared as part of the
enterprise administrator's housekeering function, or in terms of
the internal schema or mappings, are not visible through this
interface.

Note that display may be on a boob tube; it may be in a notebook;
it may even be a telephone conversation between an administrator
or an administrator's clerk, and another individual.

3.1.2 Extracting Subset of Conceptual Record-set Definition
For External Record-set Definition

The individual selects from a menu of conceptual record-sets
available to him the one that encompasses or matches his
application's external data and structure requirements. If there
is not a conceptual record-set available for his purpose, the

Page IV-15

49

individual negotiates with the enterprise administrator the
establishment of a conceptual record-set, and the population of
internal data from which the external data can be materialized.
The individual may delete from the display any conceptual field,
conceptual group, Or concertual record type not of interest., He
may delete any leg of a structure. He may delete any
intermediate 1level in a leg, but then the structural conceptual
fields are either factored into the level above, if this causes
no ambiguity, or distributed to the 1level below, if this is
required to avoid ambiguity. He may simplify a complex
conceptual record by subdividing it into several external records
(e.g., he can subdivide a ccnceptual record structured as an IMS
data base record into external records, each structured as one
segment of the data base record. He mway nominate a
representation for any conceptual field, consistent with the
domain, or he may accept the default (nominal) definition of the
representation. He may nominate any permissible reordering, or
he may accept the default (nominal) order definition. He may
nominate a structure consistent with the (canonical) declaration
of the conceptual record, or he may accept the nominal (default)
structure, but he may not augment or restructure the conceptual
record-set.

This exercise is performed to extract