
~LJL~- ~ 17._i

- 1 -

editorial

Alan Perlis recently described a sort of cosmological theory of
programming languages wherein each "star" language has as its binary
companion a "black hole"o He and others have suggested the following.

Famil Z Sta___K Black hole

FORTRAN-ALGOL FORTRAN PL/I
ALGOL - 60 ALGOL - 68
PASCAL ADA
COBOL ?

LISP LISP LISP - 2(?)

APL APL ?(Any of various
"sZructured APLs")

SNOBOL SNOBOL SNOBOL 4(?)

PROLOG PROLOG ?(too soon)

The families were suggested by Alan Perlis, except that I added SNOBOL
because it seems a family of its own. With insincere apologies to Ralph
Griswold, Jim Poage, and Ivan Polonsky, I added SNOBOL 4 to the Black
Hole list.

Is SMALLTALK another family?

Are there additions, deletions, arguments, or polemics from the audience?

CALL FOR
PAPERS

June 13-18 1983

Stockholm Sweden

__._.._2__

- L

- 2 -

The],Oth
~nternationa] Symposium on

COMPUTER
ARCHITECTURE

O

~D
3

Sponsored by:

IEEE, ACM, EUROMICRO and National Swedish Board for Technical Development

S Y M P O S I U M C O M M I T T E E

~,.JBeral ehsdrman:
Prof. Harold Lawson
Link6ping University/Electrical Engineering
S-581 83 LINKOPING, Sweden

Vice-chAirman:
Mr. Hnns H. Heilborn
Ericsson Information Systems AB
S-161 83 BROMMA, Sweden

Royal Inst. of Technology/Computer Systems
$-100 44 STOCKHOLM, Sweden

Co.program chairman -- America:
Pl'of.Jean Loup Baer
University of Washington/Computer Science Group
Seattle, Washington 98105, U.S.A.

C~f.~MariProgram chairman - Far East:
o Tokoro

KEIO University/Dept. of Electr. Engineering
3-14-1 Hiyoshi, Kohoku-Ku
Yokohama 223, Japan

Papers are solicited on any aspects of Computer
Architecture. Topic areas include, but are not limited
to, the following.

Architectural Aspects of Numeric and Symbolic
Computation

Architectures for Knowledge Based Systems

Data and Demand Driven Architectures

Educational and Descriptive Aspects of Computer
Architecture

Impact of Advances in Microelectronics and Optics

Object Oriented Architectures

Principles for Interconnection

Tools and Methods for Architecture Description and
Synthesis

Vertical Function Distribution

Distributed and Parallel Architectures

High Level Language Architectures

Submitted papers will be accepted for evaluation
until Oct. 15, 1982. Five copies of the manuscript (in
English, not exceeding 20 double-spaced pages)
should be sent to the co-program chairman for the
region to which the author belongs, that is, to Baer
(America), Tokoro (Far East), or Thorelli (Europe
and remaining regions), respectively.

Notification of acceptance will be given by Dec. 20,
1982. Authors of accepted papers will be required to
submit a final, camera-ready copy by Feb. 15, 1983.

Computer SocleW

Association for
CompuUng Machlnecy

••e European Association for
Mlcropfoce~mlng and
Mlcroprogrammlng

National Svmdlsh Board
for Technical Development

-3-

FOR PAPERS
S|GPLAN '83: Symposium on

PROGRAMMING LANGUAGE ISSUES
IN SOFTWARE SYSTEMS

Sheraton-Palace Hotel San Francisco, CA June 27-29, 1983
Sponsored by ACM-SIGPLAN

The symposium will focus on innovations in two major areas:

• new programming language constructs and abstraction mechanisms

• the application of programming language principles to the design of software systems

Relevant topics in the first area include languages or language constructs, abstraction techniques,
specification methods, and techniques for supporting concurrency or exception handling.

Relevant topics in the second area include (but are not restricted to) the application of programming
language principles and techniques to the design and organization of software systems. Examples
include text processing, display and window management, distributed computing applications,
database access, and transaction processing. Papers should describe both the pertinent language ideas
and how they are used to develop applications.

We particularly encourage the submission of papers that clearly demonstrate the effect of ideas
from programming languages on the structure and design of running systems.

Please send/our copies of a summary (not a complete paper) to the program chairman:

Lawrence A. Rowe, Computer Science Division - EECS,
University of California, Berkeley, CA 94720

Submissions will be read by at least three members of the program committee:

Stuart Feldman (Bell Laboratories) Brian Reid (Stanford Univ.)
James Homing (Xerox PARC) Mary Shaw (Carnegie-Mellon Univ.)
Barbara Liskov (MIT) David Wortman (Univ. of Toronto)

Summaries should explain what is new and interesting about the work and what has actually been
accomplished. It is important to include specific findings or specific comparisons with relevant previous
work. The committee will consider the appropriateness, clarity, originality, practicality, significance,
and overall quality of each summary. Time does not permit consideration of complete papers or long
summaries. Consequently, a length equivalent to 8 to 12 double spaced typed pages is strongly
suggested.

November 29, 1982 is the deadline for submission of summaries. Authors will be notified of acceptance
or rejection in early February 1983. The accepted papers must be typed on special forms and received
by the program chairman at the above address by April 15, 1983. Authors of accepted papers will be
asked to sign ACM Copyright forms.

Proceedings will be distributed at the symposium and will subsequently be available for purchase from
ACM. The general chairman and (temporary) local arrangements chairman is:

John White, Computer Science Division U-157
The University of Connecticut. Storrs, Connecticut 06268

-4-

AdaTEC TUTORIAL AND CONFERENCE ON ADA*
OCTOBER 4-8, 1982

HYATT REGENCY CRYSTAL CITY, ABUNOTON, VIRGaNI,

TUTORIAL
A tutorial on the Ada language wH] be conducted on October 4-5. Major

language features will be thoroughly explained and illustrated with carefully
chosen examples. The motivation for the language design will also b(
presented together with a concise summary of the language changes from July
t980 Ada }o ANSI Ada, (it is expected that Ada wilt become an ANSI standarci
this summer.) This tutorial will most probably be the first exposition of this
revision to the language.

• The tutorial should be especially useful for software deve$opers requiring an
understanding of the design princlples and major facilities of the Ada
fan.age. Attendees should have some prior knowledge of Ada,

Dr. Gerald Fisher (NYU)and Dr. Benjamin Brosgol tintermetrics) will conduct
lhe tutorial. Both have been extensively involved in the development of Ada as
Distinguished Reviewers and as imp~ementors.

Gerald A. Fisher
Senior research scientist, NYU; director of NYU Ada Project; coauthor of
NYU Ada/Ed translator and interpreter; developer of improved techniques
for practical syntactic error recovery; lecturer on Add in industry and
academia; Add Distinguished Reviewer; founder of Add Implementors
Group; chairman of AdaTEC.

Benjamin M. Bros9ol
Senior staff member. Intermetrics Inc,; manager and design team member.
"Red" Language Project; Ada Distinguished Rewewer; design team
member, TCOL/Ada and Diana intermediate languages; manager and
design team member, retargetable back end of Air Force Ada compiler;
chairman of AdaTEC Implementation Subcommittee.

MONDAY, OCTOBER 4, 1982

Morning: s Background
• Language Overview
o Types and Declarations - - basic topics
• Statements and Expressions

Aftemoom • Subprograms
o Packages and Visibility
• Exception Handling
oTypes and Declarations -- advanced topics (derived types,

numerics)

TUESDAY. OCTOBER 5.1982

Morning: - Separate Compilation
• Tabking
• Generics
• Input/Output
• Low-level Facilities
• Changes Since Ada '80
• Add Environments
• Summary and Current Ada Activities

Afternoon:

CONFERENCE
WEDNESDAY. OCTOB ER'6, 1982

Opening Session: 9:00- 10:30 AM
Welcoming Remarks: Anthony B. Gargaro (CSC)
Invited Speaker: William A. Wulf (Tartan Laboratories)

Coffee: 10:30 - 11:00 AM
Tasking and R untime Systems: 11:00 AM - 12:30 PM
Chaired by: John C. Knight (U. of Virginia)

Design and implementation in Add of a Runtime Task Supervisor
E. Falis (Stanford U.)

Monitoring for Deadlocks in Ada Tasking
S. German (Harvard U.), D. Helmbold. and D. Luckham (Stanford U.)

Implementation Strategies for Add Tasking IDiOms
P. Hi l f inger (Carnegie-Mellon ~).)

Luncheon: 12:30- 2:00 PM

KAPSE Issues: 2:00- 3:30 P~.
Chaired by: Renard F. Brander(Digital Equipment Corporation)

The KAPSE for the Ada Language System
R Tha!l (~ofTech)

Portable Ada Programming System: A Proposed Run-Time Architecture
A. Fantechi (Olivetti)

ADABASE: A Data Base for Ada Programs
W, Tichy (Purdue U.)

Coffee: 3:30 - 4:00 PM
Education: 4:00- 5:30 PM
Chaired by: Peter W. Wegner (Brown U.)

A Methodology for Programming Abstract Data Types in Ada
M. Sherman, A=Hisgen. and J. Rosenberg (Carnegie-Mellon U.)

An Annotated Example of a Design in Ada
J. Privitera (Ford Aerospace and Communications Corp.)

On the Suitability of Ada Multitasking for Expressing Parallel Algorithms
S. Yemini (Couranl Institute of Mathematical Sciences).

Birds of s Feather: 8:00- t0:00 PM

THURSDAY, OCTOBER 7,1982

invited Speaker: 8:30 - 9:00 AM
Jean O. Ichbiah (AIsys)

Compiler Front Ends: 9:00.10:30 AM
Chaired by: William A. Whitaker (USAF)

The ALS Ada Compiler Front End Architecture
R. Simpson (SofTech)

An Efficient Method of HandllngOperator Overloading in Add
E. Schonberg and G. Fisher(New York U.)

On the Access.Before-Elaboration Problem in Add
P. Belmont (Intarmetrics)

Coffee: 10:30 o 11:00 AM
Formalism: 11:00 AM - 12:30 PM
Chaired by: David C. Luekham (Stanford U.)

Testing ths INRIA Add Formal Definition: The USC*ISI Formal Semantics
Project

V. Kini. D. Martin. and A. Stoughton (USC-In formation Sciences Institute)
Rendezvous with Ada - A Proof Theoretical View

A. Pnueli (The Weizmann Institute of Science) and W. DeRoever rtJ. of
Utrecht)

An Operational Semantics of Taskino and Exception Handling in Aoa
W. Li (U. of Edinburgh)

Luncheon: 12:30-2:00 PM
Invited Speaker: Robert B. K. Dewar [New York U.)

Applications: 2:00 - 3:30 PM
Chaired by: John B. Goodenough (SofTech)

Using Add for Industrial Embedded Microprocessor Applications, It
A. Duncan and J. Hutcmson [GE Research & Development Center)

The Integration of Existing Database Systems m an Add Environment
M. Bayer, M. Dausmann S. DrossoDoulou. W. Kirchgoessner, P.
Lockemann, G. Persch. and G. Winterstein (Univars0tat Karlaruhe)

An Ada Packag.e for Discrete Event Simulation
G. Bruno (Institute di Elettrotecniea Generals. Politecnico di Todno}

Coffee: 3:30- 4:0C PM
KAPSE Interface Team Panel: 4:00 • 5:30 PM
Chaired by: Patricia A. Oberndorf (NOSC)
Birds of a Feather: 8:00-10:00 PM

FRIDAY, OCTOBER 8,1982

Invited Speaker: 8:30 - 9:00 AM
Larry E. Druffel (Add Joint Program Office)

Tools: 9:00 • 10:30 AM
Chaired by: David B. Loveman (Massachusetts Computer Associates)

A Command Language for the Ads Environment
M. Kranc [Intermetrics)

Abstract Syntax Based Programming Environments
D. LeBlang (Digital Equipment Corporation)

Linkage of Ada Comoonents - - Theme & Variation
G. Frenkel and R. Arnold (TeleSoft)

Coffee: 10:30 ° 11:00 AM

*Add Is • registered trademark of the Department of Defense

-5-

Op,~'ling @ystem Issues: 11:00 AM - 12:30 PM
Chaired by: David A. Lamb (Carnegie-Mellon U.)

Comparative Efficiency of Different Implementations of the Ada Rendezvous
A, Jones and A. ~rdo (Carnegie-Mellon U.)

A FOI~'~,.1 Model of Distributed Add Tasking
G. C~emmensen (Oansk Oatamatik Center)

The Add Virtual Operating System
S, Wht~ehitt (U. of Ca;ifornia, lrvine)

Luncheon: 12:30- 2:00 PM
l~~rrnediate Languages: 2:00- 3:30 PM
Chaired by: Benjamin M. 8rosgot (Intermetdcsl

A ~.Ow Level intermediate Language for Add
O, Roubine (Oil-Honeywell Bull), J, Tetler (Siemens A,G.), and
O. Mauret (Afeys S,A.)

#land as an Internal Representation in an Ada-in,Ada Compiler
T. Taft (tntermetrics)

An Operational Definition of Intermediate Code for implementing a Portable
Ada Compiler

B, Appe~be (U. of'California. San Diego) and G, Oisrnukes (TeleSoft)
Co{tee: 3:30 - 4:00 PM
Unrefereed Reports: 4:00.5:30 PM
Chaired by: MatyS, Van Deusen

CONFERENCE INFORMATION
LOCATION: All tutorial and conference activity will be at the Hyatt Regency
Crystal City, 2799 Jefferson Davis Highway, Arlington, Virginia 22202;
telephone (703) 486-1234.

TRANSPORTATION: The Hyatt Regency Crystal City is immediately adjacent
to Washington National Airport, just blocks from the Metro (Washington's sub-
way system). The hotel provides complimentary shuttle service to and from
Washington National Airport and Metro. tn addition, complimentary parking
~,lll be provided for conference attendees registered at the hotel.

CLIMATE: Average temperatures in Washington in October range from a
¢~aytlme high of 70'F to an evening low of 50'F.

.ACCOMMODATIONS: A block of rooms has been reserved at the Hyatt Regen-
cy Crystal City for attendees. These rooms will be reTeased after 4 September
1982 and will be available on a first-come first-served basis. Make your room
reservations using the attached form. When making reservations by phone,
mention the AdaTEC Conference to get the reduced rate.

REGISTRATION FEE; The registration fee for the tutorial includes one,copy of
the tutorial materials, two luncheons, and refreshments during breaks. The
conference registration fee includes a copy of the ~roceedings, three lunch-
eons, and refreshments during breaks. The student registration includes
everything except the conference proceedings and luncheons, Because of
limited facilities, prer~g~stration is strongly recommended.

FURTHER INFORMATION: Contact the conference chairman:
Anthony Gergaro
Computer Sciences Corporation
304 West Route 38
Moorestown, New Jersey 08057
(609) 234-1100 ext. 2280

CONFERENCE ORGANIZATION
General Chairman: Anthony 8, Gargaro
Tut'orial Chairman: Gerald A. Fisher
Local Arrangements Chairman: Oonn R, Mi|tcn
Treasurer: Raymond P. Young

i
|
|
|
|
Ii
|
|
|
|
|
|

Member of ACM and AdaTEG
Member of ACM or AdaTEC

only
Nonmember
Student

TotalAmount Enclosed $

PROGRAM COMMITTEE
David B. Loveman, Chairman

Ronatd F. Brander David A. Lamb
~enjarninM, Brosgol D~vtd C. Luckham
John B. Goodenough Edmond Schonberg
Hal Hart MaP/S,. Van Deusen
Paul N, Hitfinger Peter W. Wagner
John C. Knight William A. Whitaker

AOVANCE REGISTRATION FORM
Please use this form or facsimile to preregister. Due to limited facilities, ad-

K vance registration is recommended. Registration forms witi be processed in
the order of receipt, Advance registration closes Monday, 13 September 1982.
Please mail fomn with check made payable to ACM AdaTEC Tutorial anO Con-
ference on Aria to:

Add "82 Registration
C/o Raymond P. Young
1180 Timbershore Lane
Eagan, Minnesota 55123

Conference Tutorial Conference &
Only (a) Only (b) Tutorial (a. b)

C $135 ~ $200 O $30.5

[3 $145 0 $210 0 $330
[3 $155 D $22O ~ $35O
O $25(c) O $100(d) E3 $125(c.d)

Last Name Ft(et Name M.I

Affiliation

I Address

city State ZIpCode

Country(if not USA)

m Notes: (a) Except as noted, includes-one copy of the conference
proceedings, luncheons, and coffee service.

(b) Except as noted, includes one copy of the tutorial materials,
luncheons, and coffee service. -

(c) Includes coffee service at the conference only.
| (d) Includes one copy of the tutorial materials and coffee service

only,
m After 13 September 1982. all registration fees will increase by $15.00.

Requests for refunds will. be honored until 13 SeotemDer 1982.

l ~ m m u m m l m l m m m m B m m m n ~ l m m m ~ m m m m m m N m m m m m m m m m m m m m m m a
SENDTO: HYATT REGENCY CRYSTAL CITY

RESERVATIONS DEPT.
HOTEL RESERVATION FORM 2799 JEFFERSON DAVIS HIGHWAY DiAL DIRECT 703-486-1234

ARLINGTON VIRGINIA 22202

TypeofRoom No.of Convention "Regency
Rooms Rates Club =

Single (1 person) $69.00 $108.00

[;Iouble (2 people) $79.00 $123.00

! Bed. Rm. Suite . I $t45-600

Z Bed. Rm. Suite $500-750

The above rates are subject
to state and local taxes.

If all rooms in the requested rate category are
already reserved, the next available rate will be
assigned. *Regency Club accommodations in-
clude special guest room a~rnenities and
special food and beverage services,

Date of Arrival

I will arrive via

Time of Arrival

Date of Departure

Check in Time: 3 p.m,

Check out Time: 12 Noon

Name

! Address

I Telephone No.

I Sharing morn with

Reservations must be received by 9f4/82
Your reservation will be held until 6 P.m. unless
one night's deposit is received or guaranteed
by credit card below. Failure to cancel 24. hours
prior to arrival will result m 1 night's charges
billed to your credit card.
E} Hold until 6 p.m. only
E] Guaranteed by one of the following:

Depositof $

American Express #

Diners Club #

Carte Blanche #

Master Card #
Visa #
Expiration Date

Signature

-6-
NOTE: Copies of this report

maybe requested from
the author.

Six Language Extensions to Enhance the Portability
of Mathematical Software Written i~ PL/I:

Background and Justification
(ANL-82-29)

Kenneth W. Drltz
Applied Mathematics Division
Argonne National Laboratory

Argonne, IL 60439

Abstract

As part of its revision of ANS PL/I, American National Standards
Committee X3Ji is considering extensions llke those described here to aid in
the development of hlgh-quality portable mathematical software.

The new features include environmental enquiry functions, generalization
of "restricted expressions" (compile-time expressions), liberalization of the
contexts of restricted expressions, a named-llteral declaration type, explicit
precision specification for constants, and a pragmatic statement for express-
ing conditions that an implementation must satisfy for acceptable compila-
tion. Used together, these features will give numerical analysts access to
properties of an implementation's floatlng-polnt arithmetic in exactly the
ways required to ease the burden of tailoring a program's precision specifica-
tions to new environments. In many cases it will be possible to write PL/I
programs that are completely self-adaptlng to their host environment.

Effective definition of the environmental enquiry functions will require
the incorporation of an explicitly parameterlzed model of floatlng-point
arithmetic; the environmental enquiry functions and the results of arithmetic
operations will then be consistently defined in terms of the same parameters.
If an appropriate model (to be described in a future paper) is adopted by the
Committee and properly integrated into the Standard, a significant advantage
will be offered to numerical analysts: they will be able to state and prove
theorems about their programs' error bounds by appealing directly to the
Standard.

In addition to describing the proposed extensions, this paper presents a
careful justification and a detailed example of their intended use.

None of these features has yet been adopted by X3JI. The Commlttee is
interested in the reactions of the mathematical software commmnity to these
ideas and requests that comments be sent to the author.

*This work was supported by the Applied Mathematical Sciences Research Program
(KC-04-02) of the Office of Energy Research of the U.S. Department of Energy
under Contract W-31-109-ENG-38.

PL/I Report Available

SPECIAL FEATURE - 7 -
Epigrams on Programming

by

Alan J. PeriLs

Yale University

The phenomena surrounding computers are diverse and yield a surprisingly rich
base for launching metaphors at individual and group activities. Conversely,
classical human endeavors provide an inexhaustible source of metaphor for
those of us who are in labor within computation. Such relationships between
society and device are not new, but the incredible growth of the computer's
influence (both real and implied).lends this symbiotic dependency a vitality
like a gangly youth growing out of his clothes within an endless puberty.

The epigrams that follow attempt to capture some of the dimensions of this
traffic in imagery that sharpens, forcuses, clarifies, enlarges and
beclouds our view of this most remarkable of all roans' artifacts, the computer.

1. One man's constant is another man's variable.

2. Functions delay binding: data structures induce binding. Moral: Structure
data late in the programming process.

3. Syntactic sugar causes cancer of the semi-colons.

4. Every program is a part of some other program and rarely fits.

5. If a program manipulates a large amount of data, it does so in a small
number of ways.

6. Symmetry is a complexity reducing concept (co-routines include
sub-routines); seek it everywhere.

7. It is easier to write an incorrect program than understand a correct one.

8. A programming language is low level when its programs require attention
to the irrelevant.

9. It is better to have 100 functions operate on one data structure than
10 functions on 10 data structures.

10. Get into a rut early: Do the same processes the same way. Accumulate
idioms. Standardize. The only difference(!) between Shakespeare and
you was the size of his idiom list - not the size of his vocabulary.

11. If you have a procedure with 10 parameters, you probably missed some.

12. Recursion is the root of computation since it trades description for time.

13. If two people write exactly the same program, each should be put in micro-
code and then they certainly won't be the same.

14. In the long run every program becomes rococco- then rubble.

- 8 -

15. Everything should be built top-down, except the first time.

16. Every program has (at least) two purposes: the one for which it w ~
written and another for which it wasn't.

17. If a listener nods his head when you're explaining your program, wake
him up.

18. A program without a loop and a structured variable isn't worth writing.

19. A language that doesn't affect the way you think about programming, is
not worth knowing.

20. Wherever there is modularity there is the potential for misunderstanding:
Hiding information implies a need to check communication.

21. Optimization hinders evolution.

22. A good system can't have a weak command language.

23. To understand a program you must become both the machine and the program.

24. Perhaps if we wrote programs from childhood on, as adults we'd be able
to read them.

25. One can only display complex information in the mind. Like seeing,
movement or flow or alteration of view is more important than the
static picture, no matter how lovely.

26. There will always be things we wish to say in our programs that in all
known languages can only be said poorly.

27. Once you understand how to write a program get someone else to write it.

28. Around computers it is difficult to find the correct unit of time to
measure progress. Some cathedrals took a century to complete. Can you
imagine the grandeur and scope of a program that would take as long?

29. For systems, the analogue of a face-lift is to add to the control graph
an edge that creates a cycle, not just an additional node.

30. In programming, everything we do is a special case of something more
gene r a l - and often we know it too quickly.

31. Simplicity does not precede complexity, but follows it.

32. Programmers are not to be measured by their ingenuity and their logic
but by the completeness of their case analysis.

33. The l l th commandment was "Thou Shait Compute" or "Thou Shalt Not Compute ~ -

I forget which.

34. The string is a stark data structure and everywhere it is passed there
is much duplication of process. It is a perfect vehicle for hiding
information.

35. Everyone can be taught to sculpt: Michelangelo would have had to be
taught how not to. So it is with the great programmers.

36. The use of a program to prove the 4-color theorem will not change
mathematics - it merely demonstrates that the theorem, a challenge
for a century, is probably not important to mathematics.

37. The most important computer is the one that rages in our skulls and
ever seeks that satisfactory external emulator. The standarization
of real computers would be a d isas ter" and so it probably won't happen.

38. Structured Programming supports the law of the excluded muddle.

39. Re graphics: A picture is worth 10K words - but only those to describe
the picture. Hardly any sets of 10K words can be adequately described
with pictures.

40. There are two ways to write error-free programs; only the third one works.

41. Some programming languages manage to absorb change, but withstand progress.

42. You can measure a programmer's perspective by noting his attitude on the
continuing vitality of FORTRAN.

43. In software systems it is often the early bird that makes the worm.

44. Sometimes I think the only universal in the computing field is the
fetch-execute cycle.

45. The goal of computation is the emulation of our synthetic abilities,
not the understanding of our analytic ones.

46. Like punning, programming is a play on words.

47. As Will Rogers would have said, "There is no such thing as a free
variable."

48. The best book on programming for the layman is "Alice in Wonderland";
but that's because it's the best book on anything for the layman.

49. Giving up on assembly language was the apple in our Garden of Eden:
Languages whose use squanders machine cycles are sinful. The LISP
machine now permits LISP programmers to abandon bra and fig-leaf.

50. When we understand knowledge-based systems, it will be as before -
except our finger-tips will have been singed.

51. Bringing computers into the home won't change either one, but may
revitalize the corner saloon.

- 1 0 -

,52. Systems have sub-systems and sub-systems have subsystems and so on s,d
finitum - which is why we're always starting over.

53. So many good ideas are never heard from again once they embark in a
voyage on the semantic gulf.

54. Beware of the Turing tar-pit in which everything is possible but
nothing of interest is easy.

55. A LISP programmer knows the va|ue of everything, but the cost of nothing.

56. Software is under a constant tension. Being symbolic it is arbitrarily
perfectible; but also it is arbitrarily changeable.

57. It is easier to change the specification to fit the program than vice versa.

'58. Fools ignore complexity. Pragmatists suffer it. Some can avoid it,
Geniuses remove it.

59. In English every word can be verbed. Would that it were so in our
programming languages.

60. Dana Scott is the Church of the Lattice-Way Saints.

61. In programming, as in everything else, to be in error is to be reborn.

62. In computing, invariants are ephemeral.

63. When we write programs that "learn", it turns out we do and they don't.

64. Often it is means that justify ends: Goals advance technique and
technique survives even when goal structures crumble.

65. Make no mistake about it: Computers process numbers - not symbols. We
measure our understanding (and control) by the extent to which we can
arithmetize an activity.

66. Making something variable is easy. Controlling duration of constancy
is the trick.

67. Think of all the psychic energy expended in seeking a fundamental
distinction between "algorithm" and "program".

68. If we believe in data structures, we must believe in independent
(hence simultaneous) processing. For why else would we collect items
within a structure? Why do we tolerate languages that give us the o n e

without the other?

69. In a 5 year period we get one superb programming language. Only we
can't control when the 5 year period will begin.

- 1 1 -

70. Over the centuries the Indians developed sign language for communicating
phenomena of interest. Programmers from different tribes (FORTRAN, LISP,
ALGOL, SNOBOL, etc.) could use one that doesn't require them to carry
a blackboard on their ponies.

71. Documentation is like term insurance: It satisfies because almost no
one who subscribes to it depends on its benefits.

72. An adequate bootstrap is a contradiction in terms.

73. It is not a language's weaknesses but its strengths that control the
gradient of its change: Alas, a language never escapes its embryonic sac.

74. Is it possible that software is not like anything else, that it is meant
to be discarded: that the whole point is to always see it as soap bubble?

75. Because of its vitality, the computing field is always in desperate need
of new cliches: Banality soothes our nerves.

76. It is the user who should parametrize procedures, not their creators.

77. The cybernetic exchange between man, computer and algorithm is like a
game of musical chairs: The frantic search for balance always leaves
one of the three standing ill at ease.

78. If your computer speaks English it was probably made in Japan.

79. A year spent in artificial intelligence is enough to make one believe in
God.

80. Prolonged contact with the computer turns mathematicians into clerks
and vice versa.

81. In computing, turning the obvious into the useful is a living definition
of the word "frustration".

82. We are on the verge: Today our program proved Fermat's next-to-last
theorem!

83. What is the difference between a Turing machine and the modern computer?
It's the same as that between Hillary's ascent of Everest and the
establishment of a Hilton hotel on its peak.

84. Motto for a research laboratory: What we work on today, others will first
think of tomorrow.

85. Though the Chinese should adore APL, it's FORTRAN they put their money on.

86. We kid ourselves if we think that the ratio of procedure to data in an
active data-base system can be made arbitrarily small or even kept small.

87. We have the mini and the micro computer. In what semantic niche would
the pico computer fall?

88. It is not the computer's fault that Maxwell's equations are not adequate
to design the electric motor.

89. One does not learn computing by using a hand c~lcu]atoL but one can
forget arithmetic.

90. Computat ion has made the tree flower.

91. The computer reminds one of Lon Chancy - it is the mazhLae of a thousand
faces.

92. The computer is the ultimate polluter: Its feces are indistinguishable
from the food it produces.

93. When someone says "I want a programming language in which I need only say
what I wish done," give him a lollipop.

94. Interfaces keep things tidy, but don't accelerate growth: Functions do.

95. Don't have good ideas if you aren't willing to be responsible for them.

96. Computers don't introduce order anywhere as much as they expose
opportunities.

97. When a professor insists computer science is X but not Y, have
compassion for his graduate students.

98. In computing, the mean time to failure keeps getting shorter.

99. In man-machine symbiosis, it is man who must adjust: The machines can't.

100. We will never run out of things to program as long as there is a
single program around.

101. Dealing with failure is easy: Work hard to improve. Success is also
easy to handle: You've solved the wrong problem. Work hard to improve.

102. One can't proceed from the informal to the formal by formal means.

103. Purely applicative languages are poorly applicable.

104. The proof of a system's value is its existence.

105. You can't communicate complexity, only an awareness of it.

106. It's difficult to extract sense from strings, but they're the only
communication coin we can count on.

107. The debate rages on: Is P L / I Bachtrian or Dromedary?

108. Whenever two programmers meet to criticize their programs, both
are silent.

-13-

199. Think of it! With VLSI we can pack 109 ENiACs in 1 sq. cm.

1t0. Editing is a rewording activity.

111. Why did the Roman Empire collapse? What is the Latin for office
automation?

112. Computer Science is erabarra~sed by the computer.

113. The only constructive theory connecting neuroscience and psychology
will arise from the sgudy ot ~ software.

114. Within a computer natural language is unnatural.

115. Most people find the concept of programming obvious, but the doing
impossible.

116. You think you know when you learn, are more sure when you can write,
even more when you can teach, but certain when you can program.

117. it goes against the grain of modern education to teach children to
program. What fun is there in making plans, acquiring discipline in
organizing thoughts, devoting attention to detail and learning
to be self-critical?

118.]f you can imagine a society in which the computer-robot is the only
menial, you can imagine anything.

119. Programming is an unnatural act.

120. Adapting old programs to fit new machines usually means adapting
new machines to behave like old ones.

121. In seeking the unattainable, simplicity only gets in the way.

If there are epigrams, there must be meta-epigrams.

122. Epigrams are interfaces across which appreciation and insight flow.

123. Epigrams parametrize auras.

124. Epigrams are macros, since they are executed at read time.

125. Epigrams crystallize incongruities.

126. Epigrams retrieve deep semantics from a data base that is all procedure.

127. Epigrams scorn detail and make a point: They are a superb high-level
documentation.

128. Epigrams are more like vitamins than protein.

129. Epigrams have extremely low entropy.

130. The last epigram? Neither eat nor drink them, snuff epigrams.

-14-

correspondence

R.L. Wexelblat
Editor SIGPLAN notices

G.Ro Perkins
Depto Computer Science
University College London
Gower Street
London WCi, U~Ko
14 June 1982

I oT.T.
Shelton
Connecticut, UoS.A.

Dear Dr. Wexelblatg
I should like to discuss some of the ideas about data types put

forward in Greiter [2] , by relating this work to that of Goguen et al
[i] and, especially, Guttag and Homing [3]o The different typefaces
and notations used obscure, I feel, the common ground in these papers;
I will try to keep close to Goguen's notationo

Both Guttag and Greiter formalise the notion that objects in Tr
or TOI (type of interest) should be regarded as equivalent unless
shown to be different by operators with range Vi~To Greiter~s
operator germ O' is easily expressed as an ordinary signature O=EuI :

I = {fi:Tn-->T U {error}}
E = {fi:Tn-->Vj U {error}}

so long as we have a semantic algebra A in which sort and operator
names have set and function values° (Functions must propagate errors)
O'-trees are explained as folows:

p = T O
= T I

Pin = To\T I
Pex

Roughly speaking, terms in Pex form the left hand sides of axioms in a
Guttag-style specification. Calculated values X OT defined inductively
by Greiter are given by:

X OT = h(X) where h:To-->A 0 is unique
and the external effect [X-->xOTI XePex] is a restriction of the unique
homomorphism, h~(To\TI). The equivalence on Pin is defined:

a,b e T I ~ a~b iff h(ga(t))=h(gb(t))
for all teTo({V})\Ti({v})

where gx:T0({v})-->To unique extension of g(v)=x
This is obviously a congruence on T I and the natural thing to do would
be to extend this to a congruence on T O by saying:

a,b e To\T I ~ a~b iff h(a)=h(b)
Then ~ yields a quotient on the terms algebra TO/~ , which is an
abstract data type in the more usual sense. Such a quotient would be
isomorphic to a data type produced by Guttag's method. Crucially,
Guttag (as opposed to Goguen and others) allows any congruence which
satisfies the axioms, rather than just the smallest one. However,
Greiter leaves the congruence alone after defining it for T I, and
constructs a data type which is a rather unusual object. We use D O as
short for #0'T :

feI # fD([Xl] "-- [Xn]) =[fT(Xl --- Xn)]
feE # fD([Xl] .-- [Xn]) =h(fT(Xl --- Xn))

where [x] is the m class containing x
Thus the meaning of an operator f in D is context sensitive:

fD = fT/a if not enclosed by geE
fD = fA if enclosed by geE

and the usual "inside out" evaluation of expressions is not possible,

-15-

I.eo, D O is not an algebra in the normal sense. This is perhaps the
explanation for the lack of an implementation morphism discussed in
section 1o15 of Greiter [2] '. In that example (reals implementing
integers mod m) we can easily use the initial algebra approach to
obtain an isomorphism:

i:To/~ --> R0/e
where e is a congruence on the integral reals. (By R 0 we mean the
subalgebra which is a target of h:To-->R O) Such a congruence, e, is
permissible if it is on the TOI indexed sort; a congruence on any
other sort would plainly amount to a "fix" of an incorrect
implementation.

Greiter's condition for a data type O'T = #O'T has a parallel in
the initial algebra formulation, namely idempotency of quotient-
taking. The theorem that s (in an implementation) represents a
(unique) t e #0'T iff it can be calculated merely from the operators
in O' corresponds to the condition

TO/5 ~ d (Aw) 0
in Goguen [i], where d is a derivor from a W-algebra into an O-algebra
defined using Tw(X).

In view of the thorough treatment of consistency and completeness
in Guttag [3], the advantages of an alternative specification method
which breaks away from the initial algebra framework are not clear.
One final problem: It seems to me that the "remark" section 1.13 in
Greiter's paper implies infinite signatures in many cases, (eg
"stack(nat)" requires push0, pushl, push2, push3, o..), is this a
problem?

Yours Sincerely

[i] J.A. Goguen
J.W. Thatcher
E.G. Wagner

[2] G. Greiter

[3] J.V. Guttag
J.J. Horning

"An initial algebra approach to the specification,
correctness, and implementation of abstract data
types" in "Current Trends in Programming Methodology"
vol IV, pp80-149, Edo R. Yeh, Prentice Hall 1978

"A data type theory" pp47-53 SIGPLAN notices,
vol 17, No 5, May 1982

"The algebraic specification of abstract data types"
in "Programming Methodology" pp282-334, ed. D. Gries
Springer Verlag 1978

