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Language Journals and Newsletters List 

As a service to its members, SIGPLAN is compiling a list of joumals and newsletters which 
deal specifically with programming languages and language issues. Once the list has been com- 
piled, it will be published in SIGPLAN Notices. If you are the publisher or editor of such a 
publication, or if you are connected with such a publication in some other capacity and believe it 
unlikely that the editor or publisher will see this notice, please send the following information by 
1 March 1987 to 

Steven S. Muchnick 
Attn: Pubslist 
Sun Microsystems, Inc. MS 5-40 
2550 Garcia Avenue 
Mountain View, CA 94043 

Name of publication: 

Name of publisher: 

Short description of purpose: 

Year of first publication: 

Number of times published per year: 

Cost (if any): 

How to subscribe: 

Organizational affiliation of publication (if any): 

How to submit material for publication: 
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Second Workshop on 
Empirical Studies 
of Programmers 

December 8-9, 1987 Washington, D. C. 

In Cooperation With: 
Software Psychology Society 
University of Michigan 

M3C 
Yale University 

The First Workshop on Empirical Studies of Programmers was held in June of 1986. Attendees 
unanimously agreed that it was a most useful, exciting, and important meeting. We are pleased to 
announce that the Second Workshop will take place in December,1987. In order to facilitate 
interaction, attendance will be limited to 100 persons. We hereby request those working in this area 
to submit high quality pa.F..~.,r~ tc this Second Workshop. 

Suaaested ToDics: 
Topics of interest include, but are not limited to 
the following: 

* Cognitive models of all aspects of programming, e.g., 
design, generation, comprehension, debugging, maintenance 

* The relation of programming to problem-solving 

* The use of programming tools, environments, and 
documentation 

° The effects of style, and control and data structures, on 
program comprehension, production and maintenance 

* Evaluations of programming methodologies 

° Programming and the non-professional programmer 

* Assessments of programmer abilities 

* Studies of programmers in "programming-in-the-large" 

Information For Authors: 
Six copies of a double-spaced, 15-25 page 
manuscript should be submitted to: 

Dr. Gary Olson 
Cognitive Science and 

Machine Intelligence laboratory 
904 Monroe Street 
The University of Michigan 
Ann Arbor, MI 48109 

Accepted papers will appear in a volume 
which will be available at the workshop. 

ImDortant Dates: 
Submission Deadline: May 1, 1987 
Acceptance Notification: July 1, 1987 
Final Version Due: August 1, 1987 
Conference Date: December 8-9, 1987 

Conference Cornmltt¢,~; 
Conference Co-Chairs: 
Elliot Soloway 
Dept. of Computer Science 
Yale University 
New Haven, CT 06520 

Program Co-Chairs: 
Gary Olson 
Cognitive Science and 
Machine Intelligence laboratory 

The University of Michigan 
904 Monroe Street 
Ann Arbor, MI 48109 

Local Arrangements: 
Stan Rifkin 
Master Systems 
P.O. Box 7108 
McLean, VA 22106 

Bill Curtis 
MCC 
9430 Research Blvd. 
Austin, TX 78759 

Sylvia Sheppard 
Computer Technology Associates 
7501 Forbes Blvd. 
Lanham, MD 29796 

Program Committee: 
Victor Basili 
Deborah Boehm-Davis 
Ruven Brooks 
Marc Eisenstadt 
Thomas Green 
Jean-Michel I-lot 
S. Sitharama lyengar 
Clayton Lewis 
Tony Norcio 
Roy Pea 
Ben Shneiderman 
Kathleen Swigger 
Marvin Zelkowitz 
Nicholas Zvengintzov 
Stuart Zweben 
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CALL FOR PAPERS 

Sixth ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing 
(PODC87) 

Vancouver, British Columbia, Canada 
August 10-12, 1987 

Original research contributions are sought that address fundamental issues in the theory and prac- 
tice of distributed and concurrent systems. Topics of interest include, but are not limited to, the 
following aspects of concurrent and distributed systems: 

* Principles of distributed computation derived from practical experience with working sys- 
tems 

* Algorithms and complexity 
* Specification, semantics, and verification 
* Programming languages and programming language constructs 
* Fault tolerance 

Important Dates: 

Jan. 30, 1987: 
Apr. 10, 1987: 
May 15, 1987: 

Abstracts due. 
Authors informed of acceptance or rejection. 
A final copy of each accepted paper due, typed on special forms for 

inclusion in the conference proceedings. 

Please send eleven copies of a detailed abstract (not the complete paper), with the address, tele- 
phone number, and net address (if available) of a contact author on the cover page, to the Program 
Chair: 

Fred B. Schneider 
Department of Computer Science 

Upson Hall 
Cornell University 
Ithaca, NY 14853 

The abstract should be no more than 10 double-spaced typewritten pages. It must include a clear 
description of the problem being discussed, comparisons with extant work, and a section on major 
original contributions. There should be enough detail provided for the program committee to 
make a decision. 
Submissions that arrive late or are too long are likely to be rejected without consideration of 
their merits. 

Conference Chair: David Kirkpatlrick, University of British Columbia (kirk@ubc.csnet) 
Publicity Chair: Tiko Kameda, Simon Fraser University (tiko%Iccr.sfu.cdn@ubc.csnet) 

The Program Committee: 
Andrew Birrell, DEC 
Danny Dolev, Hebrew University 
Nissim Francez, Technion 
Eli Gafni, UCLA 
Vassos Hadzilacos, Toronto 

Leslie Lamport, DEC 
Barbara Liskov, MIT 
Michael Merritt, AT&T Bell Laboratories 
Fred Schneider, Cornell 
Eli Upfal, IBM Almaden 
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FOR IMMEDIATE RELEASE JULY 10, 1986 

M A J O R  C O N F E R E N C E  P L A N N E D  

ON HUMAN -- C O M P U T E R  I N T E R A C T I O N  

The major North American conference focusing on the improvement of in- 
teraction between humans and computers will be held in Toronto, April 5 - 
9, 1987. 

The event will be unique because it will bring together specialists in com- 
puter graphics and human-computer interaction to present research results, 
discuss issues of mutual concern, and take part in specialized training 
courses. "The conference will focus on helping make computers easier to 
use", said conference Co-Chair Ron Baecker, Co-director of the Dynamic 
Graphics Project at the University of Toronto. 

The Conference, CHI + GI '87, encourages participation from both academia 
and industry in the wide variety of disciplines involved in computer graph- 
ics and human-computer interaction. 

Of interest to practitioners, researchers, teachers, students, computer artists, 
and others working in the field, the conference will include tutorials, in- 
teractive poster sessions, videotape presentations, demonstrations, and an 
electronic theatre evening featuring the latest in spectacular computer 
graphics. 

The Conference is a combination of CHI'87 (Human Factors in Computing 
Systems) and GI '87 (Graphics Interface). The annual CHI conference (spon- 
sored by the ACM (Association for Computing Machinery) Special Interest 
Group on Computers and Human Interaction, SIGCHI) is the leading forum 
for the presentation of original designs and research in all aspects of 
human-computer interaction. The annual Graphics Interface conference, 
sponsored by the Canadian Man-Computer Communications Society 
(CMCCS), is the oldest regularly scheduled computer graphics conference. 

Toronto is a major North American centre for research on and application of 
enhanced computer human interfaces and computer graphics. More than 
1,500 delegates are expected to attend the conference at the Toronto Hilton 
Harbour Castle Hotel, April 5 - 9, 1987. 
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A copy of the Call for Participation is included with this press release. 

For Further Information: 
Wendy Walker 
CHI + GI 1987 Conference Office 
Computer Systems Research Institute 
University of Toronto 
2002 - 10 Kings College Road 
Toronto, Ontario, Canada M5S 1A4 

Phone: 416-978-5184 
Electronic mail: WWalker.CHI@Xerox., 
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Nominations for  SIGPLAN Executive Committee 

The SIGPLAN nominating committee (Mary S. Van Deusen and Steven S. 
Muchnick) have put together the following slate for the SIGPLAN 1987 
election: 

Chair: 
Vice-chair: 
Sec/Treasurer: 
Members-at-large: 

Mark Scott Johnson and Robert F. Mathis 
Teri F. Payton and David S. Wise 
Robert H. Halstead and Peter S. Mager 
Frances E. Allen, Stuart I. Feldman, David A. Fisher, 

Brent T. Hailpern, Julian A. Padget 

ACM and SIGPLAN by-laws require that all members of SIGPLAN be notified 
of their right to nominate candidates by petition. The ballot does not 
discriminate between candidates selected by the nominating committee and 
those who choose to run by petition. Members wishing to petition for 
candidacy must, by March 15, 1987, inform the following three individuals 
of their intention to petition. 

Pat Ryan 
ACM 
ii West 42nd Street 
New York, New York 10036 

Teri F. Payton 
SIGPLAN Secretary 
SDC, A Burroughs Company 
PO Box 517 
Paoli, Pennsylvania 19301 

Doris K. Lidtke 
SIGBOARD Area E Director 
Computer and Information Science 
Towson State University 
Baltimore, Maryland 21204 

Upon notification of intent to petition, ACM headquarters will send you 
the appropriate petition forms. You must acquire 103 signatures of voting 
SIGPLAN members on these forms (one percent of SIGPLAN membership) and 
return the forms to ACM headquarters (Pat Ryan) by April 15, 1987 for 
verification of voting member status. 
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PASCAL PERVERSIONS 

Philip Machanick, Craig Levieux and Paul Dadswell 
Computer Science Department, University of the Witwatersrand 

I Jan Smuts Ave, BRAAMFOhqfEIN 2001, South Africa. 

# 1 in a ser ies  

PROGRAM perverse(output); 
VAR integer : real; 

PROCEDURE aha; 
VAR real : -maxint..maxint; 

BEGIN 
real := 5; 
integer := 5.4; 
write('real',real,' integer =',integer); 
END; 

BEGIN aha; END. 

#2 

program MOREPERVERSE (0UTPUT,INPUT); 
const FALSE = TRUE; 

begin 
if FALSE then WRITE('true') 

else WRITE('false'); 
end. 

and # 3 

PROGRAMbizzare (output); 
CONST truth = false; 

PROCEDURE a; 
CONST false = true; 

PROCEDURE b; 
CONST true = truth; 

BEGIN 
CASE 5 < 4 OF 

true : write('5 is less than 4'); 
false : write('5 is not less than 4'); 

END; 
END; 

BEGIN 
b; 

END; 

BEGIN 
a; 

END. 

All of the above programs compiled and executed successfully on the IBM 
Pascal/VS compiler running the "standard" option under CMS. 
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N.I.A.L. Systems Limited P.O. Box 280, Alexandria Bay, New York 13607-0280 1-800-267-0660 

D r ,  R i c h a r d  W e x e l b l a t ,  E d : L t o r  
S I i3F:'L..AN N o t  i ~: es 
I::'h i i ,k p s  L . . a b c w a t o r i  es 

Z-;45 Sc:ar  h o t o u t :  h R o a d  
Briar'c:::tJ..F-F M a n o r ~  N'f 1051(3 

Dear  D r ,  We>,' e l  b l a t  

Ir~ t h e  n o t e  ,i:r"om Edwar ' d  C h e f  1 i n  o f  AI::'t... M a r ' k e t  News  d a t e d  J u n e  
12~ 1 9 8 6 ,  w h i c h  y o u  k i n d l y  p r i n t : e d  i n  t l " ,e  S IGF 'LAN r l o t i c : e s ~  t h e r e  
w a s  an u n . f o r ' t u r , a t . e  t y p o g r a p h i c a l  e r r o r  i n  o u r  ' t e l e p h o r ~ e  n u m b e r .  

'[he correct number for- 'toll.--free calls ~rom the LJ.S. is: 

1 --" 8 (~ O -  2 6 7  "- 0 6 6 0  

F:'ersor~s who c:all that numl]er' may requesh a ~r-ee r'eprir"~t o{ 
Mr. CI,er"lin's r'eview o{: Q'Nial whi(:h was rec:ent, ly published in 

APL M a r k e t  News. 

As well, we h a v e  m o v e d  t o  a n e w  o 4 : f i c : e  and use F: ' ,0.  Box  2128, 

K:Lngstor 'J  ON K7L  5 J 8  a s  t h e  m a i l i n g  a d d r e s s .  

A " s t a r ' t e r  .... v e r ' s i o n  of Q'Nial is n o w  available 4 o r '  the IBM F C  
f a r  t h e  g r a n d  s u m  o f  : ! V 9 9 . 0 0  LJ.S. I h i s  p r " i c ' e  i n c l u d e s  t h e  
d¢~c:um.er" , ' t a t : io r ' ,  a n d  s h i p p i n g  e . x p e r ~ s e s .  f t ' , : t s  v e r ' s i o n  i m p l e m e n t s  
m o s t  o.i: t h e  a r r a y  t h e o r ' y  b u t  d o e s  n o b  i n c : l u d e  s o m e  o f  t h e  
a d v a n c e d  . { : e a t . u r e s  ~four, d i n  t h e  r e g u l a r  Q ' N i a l .  

An "enhancied" Q'Nial with an Ar'ti.Ficial Inte].ligence Toolkit 

- w i l l  b e  a v a i l a b l e  i n  D e c e m b e r  " 8 6 .  

We a p p r e c i a t e  y o u r  a s s : k s t a n c e  i n  a d v i s i n g  t h e  s c : i e n t i f i c :  
c o m m u n i t y  o-F t . h i s  l n t e r e s ' t : i n g  p r o d u c : t .  

Si n c e r e l  y 

W i l l i a m  H .  .i." ::' s 

P r e s i  d e n  t'_. 

~'Nial is a registered trademark of Queen's University at Kingston, Ontario. 
The (~'Nial interpreter is the product of research in Computer Science at Queen%. 
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Twente University of Technology DEPARTMENT OF COSMPUTER SCIENCE 

P,O, BOX 217 - 7500 AE ENSCHEDE 
THE NETHERLANDS, 

Dr. Richard L. Wexelblat 

Editor SIGPLAN Notices 

Your reference Our reference 

Dear Dr. Wexelblat: 

Phone 053-  Date 30 Sept 1986 

In my contribution to the Sept 1986 issue of SIGPLAN Notices entitled 

"A Useful Application of Formal Procedure Parameters" a small error 

slipped through. The procedure as given prints the path from root to 

leaf except for the last item. It can be corrected by replacing the call 

to "path" in the body of "paths ~ by the call ~localpath'. 

I would like to apologize for this error and I also would like to 

thank the readers of SIGPLAN Notices who brought it to my attention. 

Sincerely, 

Peter van Eijk 

uucp: decvax~mcvax:utrcul~infpve 
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ANSI/IEEE 
Std 754.1985 

An American National Standard 

IEEE Standard for 
Binary Floating-Point Arithmetic 

Sponsor 

Standards Committee of the 
IEEE Computer Society 

Approved March 21, 1985 

IEEE Standards Board 

Approved July 26, 1985 

American National Standards Institute 

© Copyright 1985 by 

The Institute of Electrical and Electronics Engineers, Inc 
345 East 47th Street, New York, NY 10017, USA 

No part of this publication may be reproduced in  any form, 
in an electronic retrieval system or otherwise, 

without the prior written permission of the publisher. 

Reprinted by permission of IEEE. Further copies may not be made. 
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IEEE Standm'ds documents are developed within the Technical Commit- 
tees of the IEEE Societies and the Standards Coordinating Committees of 
the IEEE SUmdards Board. Members of the committees serve vo|untarfiy 
and without compensation. They are not necessarily members of the In- 
stitute. The standards developed within IEEE represent a consensus of the 
broad expertise on the subject within the Institute as well as those acctivi- 
ties outside of IEEE which have expressed an interest in participating in 
the development of the standard. 

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE 
Standard does not imply that there are no other ways to produce, test, 
measure, purchase, market, or provide other goods and services related to 
the scope of the IEEE Standard. Furthermore, the viewpoint expressed at 
the time a standard is approved and issued is subject to change brought 
about through developments in the state of the art and comments received 
from users of the standard. Every IEEE Standard is subjected to review at 
least once every five years for revision or reaflh'mation. When a document 
is more than five years old, and has not been reafl]rmed, it is reasonable to 
conclude that its contents, although still of some value, do not wholly 
reflect the present state of the art. Users are cautioned to check to deter- 
mine that they have the latest edition of any IEEE Standard. 

Comments for revision of IEEE Standards are welcome from any inter- 
ested party, regardless of membership aeiliation with IEEE. Suggestions 
for changes in documents should be in the form of a proposed change of 
text, together with appropriate supporting comments. 

Interpretations: Occasionally questions may arise regarding the meaning 
of portions of standards as they relate to specific applications. When the 
need for interpretations is brought to the attention of IEEE, the Institute 
will initiate action to prepare appropriate responses. Since IEEE Standards 
represent a consensus of all concerned interests, it is important to ensure 
that any interpretation has also received the concurrence of a balance of 
interests. For this reason IEEE and the members of its technical commit- 
tees are not able to provide an instant response to interpretation requests 
except in those cases where the matter has previously received formal 
consideration. 

Comments on standards and requests for interpretations should be ad- 
dressed to: 

Secretary, IEEE Standards Board 
345 East 47th Street 
New York, NY 10017 
USA 
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F o r e w o r d  

(This Foreword ~ not a part of ANSI/IEEE Std 754-t985, IEEE Standard for Binary Floating-Point Arithmetic.) 
Th~ standard is a product of the Floar2ng-Point Working Group of the Microprocessor Standards 

Subcommittee of the Standards Committee of the IEEE Computer Society. This work was sponsored by 
the Technical Committee on Microprocessors and Minicomputers. Draft 8.0 of this standard was pub- 
fished to solicit public conunents? Implementation techniques can be found in An Implementation 
Guide to a Proposed Standard for  Fh~ating-Point Arithmetic by Jerome T. Coonen, 2 which was based 
on a siill earlier draft of the proposal. 

This standard defines a family of commercially feasible ways for new systems to perform binary 
floating-point arithmetic. The issues of retrofitting were not considered. Among the desiderata that 
guided the formulation of this standard were 

(1) Facilitate movement of existing programs from diverse computers to those that adhere to this 
standard. 

(2) Enhance the capabilities and safety available to programmers who, though not expert in numerical 
methods, may well be attempting to produce numerically sophisticated programs. However, we recog- 
nize that utility and safety are sometimes antagonists. 

(3) Encourage experts to develop and distribute robust and efficient numerical programs that are 
portable, by way of minor editing and recompilation, onto any computer that conforms to this standard 
and possesses adequate capacity. When restricted to a declared subset of the standard, these programs 
should produce identical results on all conforming systems. 

(4) Provide direct support for 
(a) Execution-time diagnosis of anomalies 
(b) Smoother handling of exceptions 
(c) Interval arithmetic at a reasonable cost 

(5) Provide for development of 
(a) Standard elementary functions such as exp and cos 
(b) Very high precision (multiword) arithmetic 
(c) Coupling of numerical and symbolic algebraic computation 

(6) Enable rather than preclude further refinements and extensions. 

IComputter Magaz./ne vol 14, no 3, March 1I)81. 
2Computter Magaz/ne vol 13, no 1, Jmmary lgS0. 
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Members of the Floating-Point Working Group of the Microprocessor Standards Subcommittee and 
those who participated by correspondence were as follows: 

David Stevenson, Chairman 

Andrew Allison Paul F. Flanagan John C. Nash 
William Ames Gordon Force Dan O'Dowd 
Mike Arya Lloyd Fosdick Cash Olsen 
Janis Baron Robert Fraley A. Padegs 
Steve Baumel Howard Fullmer John F. Palmer 
Dileep Bhandarkar Daniel D. Gajski Beresford Parlett 
Joel Boney David M. Gay Dave Patterson 
E.H. Bristol C.W. Gear Mary H. Payne 
Werner Buchholz Martin Graham Tom Pittman 
Jim Bunch David Gustavson Lew Randall 
Ed Burdick Guy K. Haas Robert Reid 
Gary R. Burke Kenton Hanson Christian Reinsch 
Paul Clemente Chuck Hastings Frederic N. Ris 
W.J. Cody David Hough Stan Schmidt 
Jerome T. Coonen John Edward Howe Van Shahan 
Jim Crapuchettes Thomas E. Hull Robert L. Smith 
Itzhak Davidesko Suren Imkulla Roger Stafford 
Wayne Davison Richard E. James III G.W. Stewart 
R.H. Delp Paul S. Jensen Robert Stewart 
James Demmel W. Kahan Harold S. Stone 
Donn Denman Howard Kaikow W.D. Strecker 
Alvin Despaln Richard Karpinski Robert Swarz 
Augustin A. Dubrulle Virginia Klema George Taylor 
Tom Eggers Les Kohn James W. Thomas 
Philip J. Falllace Dan Kuyper Dar-Sun Tsien 
Richard Fateman M. Dundee Maples Greg Walker 
David Feign Roy Martin John Steven Walther 
Don Feinberg William H. McAllister Shlomo Waser 
Stuart Feldman Colin McMaster P.C. Waterman 
Eugene Fisher Dean Miller Charles White 

Webb Miller 

When the IEEE Standards Board 
membership: 

John E. May, Chairman 

James H. Beall 
Fletcher J. Buckley 
Rene Castenschiold 
Edward Chelotti 
Edward J. Cohen 
Paul G. Cummings 
Donald C. Fleckenstein 

approved this standard on March 21, 1985, it had the following 

John P. Riganati, Vice Chairman 

Sava I. Sherr, Secretary 

Jay Forster 
Daniel L. Goldberg 
Kenneth D. Hendrix 
Irvin N. Howell, Jr 
Jack Kinn 
Joseph L. Koepflnger* 
Irving Kolodny 
R.F. Lawrence 

Lawrence V. McCall 
Donald T. Michael* 
Frank L. Rose 
Clifford O. Swanson 
J. Richard Weger 
W.B. Wilkens 
Charles J. Wylie 

*Member emeritus 
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An American National Standard 

IEEE Standard for 
Binary Floating-Point Arithmetic 

1. Scope 2. Def in i t ions  

1.1 Implementat ion Objectives. It is intended 
that an implementation of a floating-point system 
conforming to this standard can be realized en- 
tirely in software, entirely in hardware, or in any 
combination of software and hardware. It is the 
environment the programmer or user of the sys- 
tem sees that conforms or fails to conform to 
this standard. Hardware components that require 
software support to conform shall not be said to 
conform apart from such software. 

1.2 Inclusions. This standard specifies 
(1) Basic and extended floating-point number 

formats 
(2) Add, subtract, multiply, divide, square root, 

remainder, and compare operations 
(3) Conversions between integer and floating- 

point formats 
(4) Conversions between different floating- 

point formats 
(5) Conversions between basic format floating- 

point numbers and decimal strings 
(6)Floating-point exceptions and their ham 

dling, including nonnumbers (NaNs) 

1.3 Exclusions. This standard does not specify 
(1) Formats of decimal strings and integers 
(2) Interpretation of the sign and significand 

fields of NaNs 
(3) Binary-~-~decimal conversions to and from 

extended formats 

biased exponent. The sum of the exponent and 
a constant (bias) chosen to make the biased ex- 
ponent's range nonnegative. 

binary floating-point number. A bit-string char- 
acterized by three components: a sign, a signed 
exponent, and a signiticand. Its numerical value, 
if any, is the signed product of its significand and 
two raised to the power of its exponent. In this 
standard a bit-string is not always distinguished 
from a number it may represent. 

denormalized number. A nonzero floating-point 
number whose exponent has a reserved value, 
usually the format's minimum, and whose ex- 
plicit or implicit leading signilicand bit is zero. 

destination. The location for the result of a bi- 
nary or unary operation. A destination may be ei- 
ther explicitly designated by the user or 
implicitly supplied by the system (for example, 
intermediate results in subexpressions or argu- 
ments for procedures). Some languages place the 
results of intermediate calculations in destina- 
tions beyond the user's control. Nonetheless, this 
standard defines the result of an operation in 
terms of that destination's format and the oper- 
ands' values. 

exponent. The component of a binary floating- 
point number that normally signifies the integer 
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power to which two is raised in determining the 
value of the represented number. Occasionally 
the exponent  is called the signed or unbiased ex- 
ponent. 

f rac t ion .  The field of the significand that lies to 
the right of  its implied binary point. 

mode.  A variable that a user may set, sense, 
save, and restore to control  the execution of sub- 
sequent arithmetic operations. The default mode 
is the mode that a program can assume to be in 
effect unless an explicitly contrary s ta tement  is 
included in either the program or its specifica- 
tion. The following mode shall be implemented: 
rounding, to  control the direction of rounding er- 
rors. In certain implementations, rounding preci- 
sion may be required, to shorten the precision of 
results. 
The implementor may, at his option, implement 
the following modes: traps disabled/enabled, to 
handle exceptions. 

NaN. Not a number, a symbolic entity encoded 
in floating-point format. There are two types of 
NaNs (6.2). Signaling NaNs signal the invalid op- 
eration except ion (7.1) whenever  they appear as 
operands. Quiet NaNs propagate through almost 
every arithmetic operation without signaling ex- 
ceptions. 

r e s u l t .  The bit string (usually representing a 
number)  that  is delivered to the destination. 

s i g n i f i c a n d .  The component  of a binary floating- 
point number  that consists of an explicit or im- 
plicit leading bit to the left of  its implied binary 
point and a fraction field to the right. 

shal l .  The use of  the word Mud/ signifies that 
which is obligatory in any conforming implemen- 
tation. 

s h o u l d .  The use of the word shou/d signifies that 
which is strongly recommended  as being in keep- 
ing with the intent of the standard, although ar- 
chitectural or other  constraints beyond the scope 
of  this s tandard may on occasion render  the rec- 
ommendat ions impractical. 

s t a t u s  f lag .  A variable that may take two states, 
set and clear. A user may clear a flag, copy it, or 
res tore  it to a previous state. When set, a status 
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flag may contain additional system-dependent  in- 
formation, possibly inaccessible to some users. 
The operations of this standard may as a side 
effect set some of the following flags: inexact re- 
sult, underfiow, overflow, divide by zero, and in- 
valid operation. 

user .  Any person, hardware, or program not it- 
self specified by this standard, having access to 
and controlling those operations of the program- 
ming environment specified in this standard. 

3.  F o r m a t s  

This standard defines four floating-point for- 
mats in two groups, basic and extended, each 
having two widths, single and double. The stand- 
ard levels of implementation are distinguished by 
the combinations of formats supported. 

3.1 Sets  o f  Values .  This section concerns only 
the numerical values representable within a for- 
mat, not  the encodings. The only values repre- 
sentable in a chosen format  are those specified 
by way of the following three integer parameters:  

p = the number  of  significand bits (preci- 
sion) 

Eraax = the maximum exponent  
Emin = the minimum exponent  

Each format 's  parameters  are given in Table 1. 
Within each format  only the following entities 
shall be provided: 

Numbers of the form (-1)s2E(bo.blb~...b~_l) 

where 
s = O o r l  
E = any integer between Emin and Emax, 

inclusive 
b~ = 0 or 1 

Two infinities, +~  and - ~  
At least one signaling NaN 
At least one quiet NaN 

The foregoing description enumerates  some 
values redundantly, for example, 2°(1 "0) = 
21(0 • 1) = 22(0 • 01) . . . .  . However,  the encod-  
ings of such nonzero values may be redundant  
only in extended formats (3.3). The nonzero val- 
ues of the form ±2EmiR(0 " bibs "'" bp-O are called 
denormalized. Reserved exponents  may be  used 
to encode NaNs, ±~,  ±0, and denormalized hum- 
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Format 

Parameter Single Double 
Single Extended Double Extended 

p 24 >_ 32 53 _> 64 
Eraax + 127 _> + 1023 + 1023 >_ + 16383 
Emi n - 126 <- - 1022 - 1022 ~- - 16382 
Exponent b/as + 127 unspecified + 1023 unspecified 
Exponent width in bits 8 _> 11 11 -> 15 
Format width in bits 32 >_ 43 64 --> 79 

bers .  F o r  any va r i ab le  tha t  h a s  the  va lue  zero ,  the  
s ign b i t  s p r o v i d e s  a n  e x t r a  b i t  o f  in fo rmat ion .  
A l t h o u g h  all f o r m a t s  have  d i s t i nc t  r e p r e s e n t a -  
t ions  fo r  + 0  a n d  - 0 ,  the  s igns  a re  s ign i f ican t  in 
s o m e  c i r c u m s t a n c e s ,  such  a s  d iv i s ion  by  zero,  
and  n o t  in o thers .  In  th is  s t a n d a r d ,  0 and  ~ a re  
wr i t t en  w i t h o u t  a s ign  w h e n  the  s ign  is n o t  im- 
po r t an t .  

3.2 Basic Formats. N u m b e r s  in t he  s ingle  and  
d o u b l e  f o r m a t s  a re  c o m p o s e d  of  t he  fo l lowing  

th ree  fields:  

(1) 1-bit s ign  s 
(2) B ia sed  e s p o n e n t  e = E + b / a s  
(3) F r a c t i o n  f = • b ,  b2 " "  b p _ ,  

The  r a n g e  o f  the  u n b i a s e d  e x p o n e n t  E sha l l  in- 
c lude  eve ry  in t ege r  b e t w e e n  t w o  v a l u e s  Em~, and  
Emax, inc lus ive ,  and  a l so  two  o t h e r  r e s e r v e d  val- 

ue s  Emin-1  to  e n c o d e  -+ 0 and  d e n o r m a l i z e d  num-  
bers ,  and  E m ~ . + l  to e n c o d e  _+~ and  NaNs.  The  
fo rego ing  p a r a m e t e r s  a r e  g iven in Tab le  1. E a c h  
nonz e ro  n u m e r i c a l  va lue  h a s  j u s t  one  encod ing .  
The  f ie lds  a r e  i n t e r p r e t e d  as  fo l lows:  

3.2.1 S i n g l e .  A 32-bit  s ingle  f o r m a t  n u m b e r  X 
is d iv ided  as  s h o w n  in F ig  1. The  va lue  v of  X is  
i n fe r r ed  f r o m  its c o n s t i t u e n t  f ie lds  thus  

(1) If e = 255 a n d f  ¢ 0, t hen  v is  NaN regard-  
less  of  s 

(2) If e = 255 a n d f  = 0, t hen  v = ( - 1 ) s ~  
(3) ff 0 < e < 255, t hen  v = ( - 1 ) s 2 e - ~ 7 ( l o f )  
( 4 ) I f  e = 0 a n d f  ~ 0, t hen  v = ( - 1 ) s 2 - ~ 6 ( 0 - f )  

( d e n o r m a l i z e d  n u m b e r s )  
(5) If e = 0 a n d f  = 0, t hen  v = ( - 1 ) s 0  (zero)  

3.2.2 D o u b l e .  A 64-bit  d o u b l e  f o r m a t  n u m b e r  
X is d iv ided  as  s h o w n  in F ig  2. The  v a l u e  v of  X 
is i n fe r r ed  f rom i t s  c o n s t i t u e n t  f ie lds  t hus  

1 

msb 

Fig 1 
Single Format 

msb m e a n s  most significant bit 
Isb m e a n s / e a s t  significant b# 

8 23  

e f 

Isb msb Isb 

. , .  w id ths  

... order 

1 11 

msb Isb 

Fig 2 
Double Format 

52 

msb Isb 

• .. widths 

• . . order 
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(1) If e = 2047 a n d f  ~: 0, then v is NaN regard- 
less of s 

(2) ff e = 2047 a n d f  = 0, then v = ( - 1 ) ' ~  
(3) ff 0 < e < 2047, then v = (-1)s2e-l°23(l°f) 
(4) f i e  = 0 a n d f  ~e 0, t henv  = ( - • s  2-1°22(0 "f~ 

(denormalized numbers) 
(5) f i e  = 0 a n d  f =  0, t h e n v  = ( - 1 )  s0 (ze ro )  

3.3 E x t e n d e d  F o r m a t s .  The single extended and 
double extended formats encode in an implemen- 
tat ion-dependent way the sets of values in 3.1 
subject to the constraints of Table 1. This stand- 
ard allows an implementation to encode some 
values redundantly, provided that  redundancy be 
t ransparent  to the user  in the following sense: an 
implementation either shall encode every non- 
zero value uniquely or it shall not distinguish re- 
dundant encodings of nonzero values. An 
implementation may also reserve some bit strings 
for  pmlaoses beyond the scope of this standard. 
When such a reserved bit string occurs as an op- 
erand the result is not  specified by this standard. 

An implementation of this standard is not re- 
quired to provide (and the user  should not as- 
sume) that  single extended have greater range 
than double. 

3.4 Combina t ions  of  F o r m a t s .  All implementa- 
tions conforming to this standard shall support 
the single format. Implementations should sup- 
port  the extended format  corresponding to the 
widest basic format  supported, and need not sup- 
port  any other extended format? 

4. Rounding  

Rounding takes a number  regarded as infinitely 
precise and, if necessary, modifies it to fit in the 
destination's format while signaling the ipexact 
except ion (7.5). Except  for binary = = decimal 
conversion (whose weaker  conditions are spec- 
ified in 5.6), every operation specified in Section 
5 shall be performed as if it first produced an 
intermediate result  correc t  to infinite precision 
and with unbounded range, and then rounded 
that result  according to one of  the modes in this 
sectlcm. 

The rounding modes  affect all arithmetic oper- 
ations except  comparison and remainder. The 

sOniy ff upward compatibility and speed are important is- 
sues should a system supporting the double extended format 
also support ,,dngle extended. 
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rounding modes may affect the signs of zero 
sums (6.3), and do affect the thresholds beyond 
which overflow (7.3) and underflow (7.4) may be 
signaled. 

4.1 Round  to  Nearest .  An implementation of this 
standard shall provide round to nearest  as the 
default rounding mode. In this mode the repre- 
sentable value nearest to the infinitely precise re- 
sult shall be delivered; ff the two nearest  
representable values are equally near, the one 
with its least significant bit zero shall be  deliv- 
ered. However, an infinitely precise result  with 
magnitude a t  l e a s t  2Emax(2--2 -p) shall round to 00 
with no change in sign; here  Emax and p are de- 
termined by the destination format (see Section 
3) unless overridden by a rounding precision 
mode (4.3). 

4.2 Directed Roundings. An implementation 
shall also provide three user-selectable directed 
rounding modes: round toward +o% round 
toward - ~ ,  and round toward 0. 

When rounding toward + ~  the result shall be 
the format 's  value (possibly +o0) closest to and 
no less than the infinitely precise result. When 
rounding toward -0o the result  shall be the for- 
mat's value (possibly - ~ )  closest to and no 
greater than the infinitely precise result. When 
rounding toward 0 the result  shall be the for- 
mat's value closest to and no greater in magni- 
tude than the infinitely precise result. 

4.3 R o u n d i n g  Prec is ion .  Normally, a result  is 
rounded to the precision of  its destination. How- 
ever, some systems deliver results only to  double 
or extended destina~ons. On such a system the 
user, which may be a high-level language com- 
piler, shall be able to specify that  a result  be 
rounded instead to single precision, though it 
may be s tored in the double or extended format 
with its wider exponent  range. 4 Similarly, a sys- 
tem that delivers results only to double extended 
destinations shall permit the user  to specify 
rounding to single or double precision. Note that 
to meet  the specifications in 4.1, the result cannot  
suffer more than one rounding error. 

4Control of rounding precision is intended to allow systems 
whose d e . n a t i o n s  are always double or extended to mimic, 
in the absence of over/undertow, the precisions of systems 
with single and double de~dnaflons. An implementmiou 
should not provide operations that combine double or ex- 
tended operands to produce a single result, nor operations 
that combine double extended operands to produce a double 
result, with only one rounding. 

10 
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5. Operations 

All conforming implementations of this stand- 
ard shall provide operations to add, subtract, 
multiply, divide, extract the square root, find the 
remainder, round to integer in floating-point for- 
mat, convert between different floating-point for- 
mats, convert between floating-point and integer 
formats, convert binary -~-~ decimal, and com- 
pare. Whether copying without change of format 
is considered an operation is an implementation 
option. Except for binary ~ decimal conversion, 
each of the operations shall be performed as if it 
first produced an intermediate result correct to 
infinite precision and with unbounded range, and 
then coerced this intermediate result to fit in the 
destination's format (see Sections 4 and 7). Sec- 
tion 6 augments the following specifications to 
cover ±0, ±~,  and NaN; Section 7 enumerates 
exceptions caused by exceptional operands and 
exceptional results. 

5.1 Ari thmetic .  An implementation shall provide 
the add, subtract, multiply, divide, and remainder 
operations for any two operands of the same for- 
mat, for each supported format; it should also 
provide the operations for operands of differing 
formats. The destination format (regardless of 
the rounding precision control of 4.3) shall be at 
least as wide as the wider operand's format. All 
results shall be rounded as specified in Section 4. 

When y ~: 0, the remainder r = x REM y is 
defined regardless of the rounding mode by the 
mathematical relation r = x - y x n, where n is 
the integer nearest the exact value x /y;  whenever 
] n - x / y l  = ½, then n is even. Thus, the re- 
mainder is always exact. If r = 0, its sign shall 
be that of x. Precision control (4.3) shall not 
apply to the remainder operation. 

5.2 Square Root.  The square root  operation 
shall be provided in all supported formats. The 
result is defined and has a positive sign for all 
operands >_ 0, except that ~ - 0  shall be -0 .  The 
destination format shall be at least as wide as 
the operand's. The result shall be rounded as 
specified in Section 4. 

5.3 Floating-Point Format Conversions. It 
shall be possible to convert floating-point num- 
bers between all supported formats. If the con- 
version is to a narrower precision, the result 
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shall be rounded as specified in Section 4. Con- 
version to a wider precision is exact. 

5.4 Conversion Between F loa t ing-Poin t  and 
Integer Formats .  It shall be possible to convert 
between all supported floating-point formats and 
all supported integer formats. Conversion to in- 
teger shall be effected by rounding as specified 
in Section 4. Conversions between floating-point 
integers and integer formats shall be exact unless 
an exception arises as specified in 7.1. 

5.5 Round Floating-Point Number to Integer 
Value. It shall be possible to round a floating- 
point number to an integral valued floating-point 
number in the same format. The rounding shall 
be as specified in Section 4, with the understand- 
ing that when rounding to nearest, if the differ- 
ence between the unrounded operand and the 
rounded result is exactly one half, the rounded 
result is even. 

5.6 Binary  ~ Decimal Conversion. Conversion 
between decimal strings in at least one format 
and binary floating-point numbers in all sup- 
ported basic formats shall be provided for num- 
bers throughout the ranges specified in Table 2. 
The integers M and N in Tables 2 and 3 are such 
that the decimal strings have values ±M × 10 ±N. 
On input, trailing zeros shall be appended to or 
stripped from M (up to the limits specified in 
Table 2) so as to minimize N. When the destina- 
tion is a decimal string, its least significant digit 
should be located by format specifications for 
purposes of rounding. 

When the integer M lies outside the range 
specified in Tables 2 and 3, that is, when M >_ 10 9 
for single or 10 ~7 for double, the implementor 
may, at his option, alter all significant digits after 
the ninth for single and seventeenth for double 
to other decimal digits, typically 0. 

Conversions shall be correctly rounded as 
specified in Section 4 for operands lying within 

Table 2 
Decimal Conversion Ranges 

Format 
Decimal to Binary Binary to Decimal 
MaxM MaxN MaxM MaxN 

Single l(P- I 99 IiF- I 53 
Double 1017-1 999 I017- I 340 

11 



- 1 9 -  

ANSI/IEEE 
Std 754-1985 

the ranges specified in Table 3. Otherwise, for 
rounding to nearest, the error in the converted 
result shall not exceed by more than 0.47 units in 
the destination's least significant digit the error 
that is incurred by the rounding specifications of 
Section 4, provided that exponent  over/under- 
flow does not occur. In the directed rounding 
modes the error  shall have the correct  sign and 
shall not  exceed 1.47 units in the last place. 

Conversions shall be monotonic, that is, in- 
creasing the value of a binary floating-point num- 
ber shall not decrease its value when converted 
to a decimal string; and increasing the value of a 
decimal string shall not  decrease its value when 
converted to a binary floating-point number. 

When rounding to nearest, conversion from bi- 
nary to decimal and back to binary shall be the 
identity as long as the decimal string is carried to 
the maximum precision specified in Table 2, 
namely, 9 digits for single and 17 digits for dou- 
ble. 5 

ff decimal to binary conversion over/under- 
flows, the response is as specified in Section 7. 
Over /unde r tow and NaNs and infinities encoun- 
tered during binary to decimal conversion should 
be indicated to the user  by appropriate strings. 
NaNs encoded in decimal strings are not spec- 
ified in this standard. 

To avoid inconsistencies, the procedures  used 
for binary ~ decimal conversion should give the 
same results regardless of whether  the conver- 

Table 3 
Correctly Rounded Decimal Conversion Range 

Format  
Decimal to Binary Binary to Decimal 

M a x M  M a x N  M a x M  M a x N  

Single I{F-  1 13 10 ° -  1 13 
Double 10 Iv-  1 27 101 ~ -  1 27 
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sion is performed during language translation (in- 
terpretation, compilation, or assembly) or during 
program execution (run-time and interactive in- 
put/output).  

5.7 Compar i son .  It shall be possible to compare  
floating-point numbers in all supported formats, 
even ff the operands'  formats differ. Comparisons 
are exact and never overflow nor undedlow. 
Four  mutually exclusive relations are possible: 
less than, equal, greater than, and unordvred. 
The last case arises when at least one operand is 
NaN. Every NaN shall compare unordered  with 
everything, including itseff. Comparisons shall ig- 
nore the sign of zero (so +0 = - 0 ) .  

The result of a comparison shall be delivered 
in one of two ways at the implementor 's  option: 
either as a condition code identifying one  of  the 
four relations listed above, or as a true-false re- 
sponse to a predicate that  names the specific 
comparison desired. In addition to the true-false 
response, an invalid operation except ion (7.1) 
shall be signaled when, as indicated in Table 4, 
last column, unordered operands are compared  
using one of  the predicates involving < or  > but  
not ? (Here the symbol ? signifies unordered) .  

Table 4 exhibits the twenty-six functionally dis- 
tinct useful predicates named, in the first column, 
using three notations: ad hoc, FORTRAN-like, and 
mathematical. It shows how they are obtained 
from the four condition codes and tells which 
predicates cause an invalid operation except ion 
when the relation is unordered. The entries T 
and F indicate whether  the predicate is true or  
false when the respective relation holds. 

Note that predicates come in pairs, each a log- 
ical negation of the other;  applying a prefix such 
as NOT to negate a predicate in Table 4 reverses  
the true/false sense of its associated entries, but  
leaves the last column's entry unchanged, e 

Implementations that provide predicates  shall 
provide the first six predicates in Table 4 and 
should provide the seventh, and a means of  log- 
ically negating predicates. 

SThe properties specified for conversions are implied by er- 
ror bounds that depend on the format (single or double) and 
the number of decimal digits involved: the 0.47 mentioned is 
a worst-case bound only. For a detailed discussion of these 
error bounds and economical conversion algorithms that ex- 
ploit the extended format, see COONEN, SEROME T. Contri- 
butions to a Proposed Standard f o r  Binary  l~oating-Point 
Arithmetic. PieD. Thesis, University of  CaUforni_a, Berkeley, 
CA, 1984. 

eThere may appear m be two ways to write the logical 
negation of a predicate, one using NOT explicitly and the 
other reversing the relational operator. For example, the log- 
ical negation of (X = Y) may be written either NOT(X = Y) or 
(X?< > Y); in this case both expreasions are funclionally 
equivalent to (X ~ Y). However, this coincidence does not oc- 
cur for the other predicates. For example, the logical nega- 
tion of (X < Y) is just NOT(X < Y), the reversed predicate 
(X ?>--Y) is different in that it does not signal an invalid 
operation exception when X and Y are unordere~ 
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Predicates and Relations 
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Predicates 

Ad hoc FORTRAN Math 
Greater 

Relations 

Less 
Than Equal Unordered 

Exception 

Invalid If 
Unordered 

= .EQ. = 
? < >  .NE. ~ T 

> .GT. > T 
> = .GE. -> T 
< .iT. < 

< = .LE. _< 
? unordered 

< >  .LG. T 

< = >  .LEG. T 
?> .UG. T 

?> = .UGE. T 
?< .UL. 

?< = .ULE. 
? = .UE. 

F F T F 
T F T 

F F F 
F T F 

F T F F 
F T T F 
F F F T 

T 

T 

F T 
F T 
F 

T 
F F T 
F T T 

F T 
T T 

F T T 

F 

F 

Yes 
Yes 
Yes 
Yes 

Yes 

Yes 

No 
No 

No 

No 
No 
No 
No 
No 

NOT(>) 
NOT(> = )  
NOT(<) T 

NOT(< = )  T 
NOT(?) T 

N O T ( < > )  

NOT(< = >) 
NOT(?>) 
NOT(?> =) 
NOT(?<) T 
NOT(?< =) T 
NOT(?=) T 

F T T T 
F T F T 

F T T 
F F T 

T T F 

F F T T 

F F F T 
F T T F 
F T F F 

F T F 
F F F 

T F F 

Yes 
Yes 
Yes 
Yes 

Yes 

Yes 

No 

No 
No 
No 
No 
No 

6. Inf in i ty ,  N a N s ,  and S igned  Zero  

6.1 Infinity Arithmetic. Infinity arithmetic shall 
be construed as the limiting case of real arithme- 
tic with operands of arbitrarily large magnitude, 
when such a limit exists. Iniinites shall be inter- 
preted in the afline sense, that is, -oo<(every 
finite number)< +oo. 

Arithmetic on 0o is always exact and therefore 
shall signal no exceptions, except for the invalid 
operations specified for ~ in 7.1. The exceptions 
that do pertain to o0 axe signaled only when 

(1) ~ is created from finite operands by over- 
flow (7.3) or division by zero (7.2), with corre- 
sponding trap disabled 

(2) ~ is an invalid operand (7.1). 

6.2 Operations with NaNs. Two different kinds 
of NaN, signaling and quiet, shall be supported in 
all operations. Signaling NaNs afford values for 
unlnitialized variables and axithmetic-like en- 

hancements (such as complex-affme infinities or 
extremely wide range) that axe not the subject of 
the standard. Quiet NaNs should, by means left 
to the implementor's discretion, afford retrospec- 
tive diagnostic information inherited from invalid 
or unavailable data and results. Propagation of 
the diagnostic information requires that informa- 
tion contained in the NaNs be preserved through 
arithmetic operations and floating-point format 
conversions. 

Signaling NaNs shall be reserved operands that 
signal the invalid operation exception (7.1) for 
every operation listed in Section 5. Whether 
copying a signaling NaN without a change of for- 
mat signals the invalid operation exception is the 
implementor's option. 

Every operation involving a signaling NaN or 
invalid operation (7.1) shall, ff no trap occurs and 
ff a floating-point result is to be delivered, deliver 
a quiet NaN as its result. 

Every operation involving one or two input 
NaNs, none of them signaling, shall signal no ex- 
ception but, ff a floating-point result is to be de- 
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livered, shall deliver as its result  a quiet NaN, 
which should be  one of  the input NaNs. Note 
that  format  conversions might be  unable to de- 
liver the same  NaN. Quiet NaNs do have effects 
similar to signaling NaNs on operat ions that do 
not  deliver a floating-point result; these  opera- 
tions, namely  compar i son  and conversion to a 
format  that  has no NaNs, are discussed in 5.4, 
5.6, 5.7, and  7.1. 

6.3 T h e  S ign  Bi t .  This s tandard does not  inter- 
p re t  the sign of an NaN. Otherwise,  the sign of a 
p roduc t  or  quotient is the exclusive or of  the op- 
erands '  signs; the sign of  a sum, or of  a differ- 
ence x - y regarded as a sum x + ( -  y) ,  differs 
f rom at  mos t  one of the addends'~signs, and the 
sign of the result  of  the round floating-point num- 
ber  to integral value operat ion is the sign of the 
operand. These  rules shall apply even when oper- 
ands  or resul ts  are zero or infinite. 

When the sum of two operands with opposite 
signs (or  the difference of two operands  with 
like signs) is exact ly zero, the sign of  that  sum 
(or  difference) shall be  + in all rounding modes  
except  round  toward  -oo, in which mode  that  
sign shall be  - .  However ,  x + x = x - ( -  x)  
retains the  same sign as x even when x is zero. 

Excep t  that ~ - 0  shall be  - 0 ,  every valid 
square roo t  shall have a positive sign. 

IEEE STANDARD FOR 

7.1 Inval id  Opera t ion .  The invalid operat ion ex- 
ception is signaled if an operand is invalid for  
the operation to be  performed.  The result, when 
the exception occurs  without a trap, shall be  a 
quiet NaN (6.2) provided the destination has  a 
floating-point format.  The invalid operat ions are 

(1) Any operation on a signaling NaN (6.2) 
(2) Addition or sub t rac t ion- -magni tude  sub- 

traction of inflnites such as, ( + ~ )  + (-c¢) 
(3) Mult ipl icat ion--0 × 
(4) Divis ion--0 /0  or oo/~ 
(5) R e m a i n d e r - -  x REM y, where y is zero or 

x is infinite 
(6) Square roo t  if the operand is less than zero 
(7) Conversion of a binary floating-point num- 

ber  to an integer or decimal format  when over- 
flow, infinity, or  NaN precludes  a faithful repre- 
sentation in that  format  and this cannot  other- 
wise be  signaled 

(8) Compar ison by way of predicates  involving 
< or > ,  without  ?, when the operands are unor-  
dered (5.7, Table 4) 

7.2 Division by  Zero.  If  the divisor is zero and 
the dividend is a finite nonzero number,  then the 
division by zero exception shall be  signaled. The 
result, when no trap occurs,  shall be  a correctly 
signed 00 (6.3). 

7. E x c e p t i o n s  

There are five types of  exceptions that  shall be 
signaled when detected. The signal entails setting 
a status flag, taking a trap, or  possibly doing 
both. With each except ion should be associated a 
t rap under  user control, as specified in Section 8. 
The default  response  to an exception shall be to 
proceed  without  a trap. This s tandard specifies 
resul ts  to be  delivered in both trapping and non- 
trapping situations. In some cases the result  is 
different if a t rap is enabled. 

For each  type of except ion the implementat ion 
shall p rov ide  a s tatus flag that  shall be  set  on any 
occur rence  of the corresponding except ion when 
no corresponding trap occurs. It shall be  reset  
only at  the user ' s  request. The user shall be  able 
to test  and to alter the status flags individually, 
and should further be  able to save and restore  
five at  one time. 

The only except ions that  can coincide are in- 
exact  with overflow and inexact with under tow.  

7.3 Overf low. The overflow exception shall be  
signaled whenever  the destination format ' s  
largest finite number  is exceeded in magnitude 
by what  would have been the rounded floating- 
point  result  (Section 4) were  the exponent  range 
unbounded.  The result, when no trap occurs,  
shall be  determined by the rounding mode and 
the sign of the intermediate result  as follows: 

(1) Round to nearest  carries all overflows to 
with the sign of the intermediate result  

(2) Round toward 0 carries all overflows to the 
format ' s  largest  finite number  with the sign of 
the intermediate result 

(3) Round toward - ~  carr ies  positive over- 
flows to the format ' s  largest  finite number,  and 
carries negative overflows to  - ~  

(4) Round toward +0o carr ies  negative over- 
flows to the format ' s  most  negative finite num- 
ber, and carries positive overflows to + ~  

Trapped overflows on all operat ions except  
conversions shall deliver to the trap handler  the 
result obtained by dividing the infinitely precise 
result by 2 ~ and then rounding. The bias adjust a 
is 192 in the single, 1536 in the double, and 
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3 × 2 "-2 in the extended format, when n is the 
number of bits in the exponent field/ Trapped 
overflow on conversion from a binary floating- 
point format shall deliver to the trap handier a 
result in that or a wider format, possibly with the 
exponent bias adjusted, but rounded to the des- 
tination's precision. Trapped overflow on decimal 
to binary conversion shall deliver to the trap han- 
dler a result in the widest supported format, pos- 
sibly with the exponent bias adjusted, but 
rounded to the destination's precision; when the 
result lies too far outside the range for the bias 
to be adjusted, a quiet NaN shall be delivered in- 
stead. 

7.4 Underflow. Two correlated events contribute 
to underflow. One is the creation of a tiny non- 
zero result between ±2 ~mia which, because it is 
so tiny, may cause some other exception later 
such as overflow upon division. The other is ex- 
traordinary loss of accuracy during the approxi- 
mation of such tiny numbers by denormalized 
numbers. The implementor may choose how 
these events are detected, but shall detect these 
events in the same way for all operations. Tini- 
ness may be detected either 

(1) After round ing- -when  a nonzero result 
computed as though the exponent range were 
unbounded would lie strictly between ±2 emm 

(2) Before round ing- -when  a nonzero result 
computed as though both the exponent range 
and the precision were unbounded would lie 
strictly between ±2 Emin. 

Loss of accuracy may be detected as either 
(3) A denormalization //ass--when the deliv- 

ered result differs from what would have been 
computed were exponent range unbounded. 

(4) An inexact resu/ t --when the delivered re- 
sult differs from what would have been com- 
puted were both exponent range and precision 
unbounded (This is the condition called inexact 
in 7,5). 

When an underflow trap is not implemented, or 
is not enabled (the default case), underflow shall 
be signaled (by way of the underflow flag) only 
when both tininess and loss of accuracy have 
been detected. The method for detecting tininess 
and loss of accuracy does not affect the deliv- 
ered result which might be zero, denormalized, 
or ±2 ~m~. When an underflow trap has been imple- 

7The bias adjust is chosen to translate over/tmderflowed 
values as nearly as possible to the middle of the exponent 
range so that, if desired, they can be used in subsequent 
scaled operations with less risk of causing further excep~ons. 
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mented and is enabled, underflow shall be sig- 
naled when tininess is detected regaT4less of loss 
of accuracy. Trapped underflows on all opera- 
tions except conversion shall deliver to the trap 
handler the result obtained by multiplying the 
infinitely precise result by 2 ~ and then rounding. 
The bias adjust a is 192 in the single, 1536 in the 
double, and 3 × 2 "-2 in the extended format, 
where n is the number of bi~ in the exponent 
field, s Trapped underflows on conversion shall be 
handled analogously to the handling of overflows 
on conversion. 

7.5 Inexact .  If the rounded result of an opera- 
tion is not exact or if it overflows without an 
overflow trap, then the inexact exception shall be 
signaled. The rounded or overflowed result shall 
be delivered ~o the destination or, if an inexact 
trap occurs, to the trap handier. 

8. Traps 

A user should be able to request a trap on any 
of the five exceptions by specifying a handier for 
it. He should be able to request that an existing 
handier be disabled, saved, or restored. He should 
also be able to determine whether a specific trap 
handler for a designated exception has been en- 
abled. When an exception whose trap is disabled 
is signaled, it shall be handled in the manner 
specified in Section 7. When an exception whose 
trap is enabled is signaled the execution of the 
program in which the exception occurred shall 
be suspended, the trap handier previously spec- 
ified by the user shall be activated, and a result, 
if specified in Section 7, shall be delivered to it. 

8.1 Trap Handler. A trap handler should have 
the capabilities of a subroutine that can return a 
value to be used in lieu of the exceptional opera- 
tion's result; this result is undefined unless deliv- 
ered by the trap handler. Similarly, the flag(s) 
corresponding to the exceptions being signaled 
with their associated traps enabled may be un- 
defined unless set or reset  by the trap handler. 

SNote that  a system whose underlying hardware a l w ~ s  
traps on undertow, producing a rounded, bias-adjusted result, 
shall indicate whether such a result  is rounded up in magni- 
tude in order that  the correctly denormallzed r e s ~  may be 
produced in system software when the user undertow trap is 
disu~blecL 
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When a system traps, the trap handler should 
be able to determine 

(1) Which exception(s) occurred on this opera- 
tion 

(2) The kind of operation that was being per- 
formed 

(3) The destination's format 
(4) In overflow, underilow, and inexact excep- 

tions, the correctly rounded result, including in- 

-23- 
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formation that might not fit in the destination's 
format 

(5) In invalid operation and divide by zero ex- 
ceptions, the operand values 

8.2 Precedence. If enabled, the overflow and un- 
derflow traps take precedence over a separate in- 
exact trap. 
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A p p e n d i x  
R e c o m m e n d e d  F u n c t i o n s  a n d  P r e d i c a t e s  

(This Appendix is not a part of ANSI/IEEE Std 754-1985, IEEE Standaxd for Binary Floating-Point ArithmeUc.) 

The following functions and predicates are recommended as aids to program portability across differ- 
ent systems, perhaps performing arithmetic very differently. They are described generically, that is, the 
types of  the operands and results are inherent in the operands. Languages that require explicit typing 
will have corresponding families of functions and predicates. 

Some functions, such as the copy operation y :=  x without change of format, may at the implemen- 
tot 's option be treated as nonarithmetic operations which do not signal the invalid operation exception 
for signaling NaNs; the functions in question are (1), (2), (6), and (7). 

(1) Copysign(x,y) returns x with the sign of y. Hence, abs(x) = copysign(x,l.0), even it x is NaN. 
(2) - x  is x copied with its sign reversed, not 0 - x ;  the distinction is germane when x is _+ 0 or NaN. 

Consequently, it is a mistake to use the sign bit to distinguish signaling NaNs from quiet NaNs. 
(3) Scalh(y,N) returns y × 2 N for integral values N without computing 2 :¢. 
(4) Logb(x) returns the unbiased exponent of x,  a signed integer in the format of x, except that 

logb(NaN) is a NaN, logb(~) is +~,  and logb(0) is - ~  and signals the division by zero exception. When 
x is positive and finite the expression scalb[x,-logb(x)] lies strictly between 0 and 2; it is less than 1 
only when x is denormalized. 

(5) Nextafter(x,y) returns the next representable neighbor of x in the direction toward y. The follow- 
ing special cases arise: ff x = y, then the result is x without any exception being signaled; otherwise, ff 
either x or y is a quiet NaN, then the result is one or the other of the input NaNs. Overflow is signaled 
when x is finite but nextafter(x,y) is infinite; unde r tow is signaled when nextafter(x,y) lies strictly 
between ±2 emm, in both cases, inexact is signaled. 

(6) Finite(x) returns the value TRUE ff - ~  < x < +0% and returns FALSE otherwise. 
(7) Isnan(x), or equivalently x~x, returns the value TRUE ff x is a NaN, and returns FALSE otherwise. 
(8) x<>y is TRUE only when x<y or  x>y, and is distinct from x¢y, which means NOT(x=y) 

(Table 4). 
(9) Unordered(x,y), or x?y, returns the value TRUE ff x is unordered with y,  and returns FALSE 

otherwise (Table 4). 
(10) Class(x) tells which of the following ten classes x falls into: signaling NaN, quiet NaN, - ~ ,  

negative normalized nonzero, negative denormalized, -0 ,  +0, positive denormalized, positive normalized 
nonzero, +~.  This function is never exceptional, not  even for signaling NaNs.. 
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