
SI

annou ncements

- t -

Language Journals and Newsletters List

As a service to its members, SIGPLAN is compiling a list of joumals and newsletters which
deal specifically with programming languages and language issues. Once the list has been com-
piled, it will be published in SIGPLAN Notices. If you are the publisher or editor of such a
publication, or if you are connected with such a publication in some other capacity and believe it
unlikely that the editor or publisher will see this notice, please send the following information by
1 March 1987 to

Steven S. Muchnick
Attn: Pubslist
Sun Microsystems, Inc. MS 5-40
2550 Garcia Avenue
Mountain View, CA 94043

Name of publication:

Name of publisher:

Short description of purpose:

Year of first publication:

Number of times published per year:

Cost (if any):

How to subscribe:

Organizational affiliation of publication (if any):

How to submit material for publication:

© L[L
- 2 -

Second Workshop on
Empirical Studies
of Programmers

December 8-9, 1987 Washington, D. C.

In Cooperation With:
Software Psychology Society
University of Michigan

M3C
Yale University

The First Workshop on Empirical Studies of Programmers was held in June of 1986. Attendees
unanimously agreed that it was a most useful, exciting, and important meeting. We are pleased to
announce that the Second Workshop will take place in December,1987. In order to facilitate
interaction, attendance will be limited to 100 persons. We hereby request those working in this area
to submit high quality pa.F..~.,r~ tc this Second Workshop.

Suaaested ToDics:
Topics of interest include, but are not limited to
the following:

* Cognitive models of all aspects of programming, e.g.,
design, generation, comprehension, debugging, maintenance

* The relation of programming to problem-solving

* The use of programming tools, environments, and
documentation

° The effects of style, and control and data structures, on
program comprehension, production and maintenance

* Evaluations of programming methodologies

° Programming and the non-professional programmer

* Assessments of programmer abilities

* Studies of programmers in "programming-in-the-large"

Information For Authors:
Six copies of a double-spaced, 15-25 page
manuscript should be submitted to:

Dr. Gary Olson
Cognitive Science and

Machine Intelligence laboratory
904 Monroe Street
The University of Michigan
Ann Arbor, MI 48109

Accepted papers will appear in a volume
which will be available at the workshop.

ImDortant Dates:
Submission Deadline: May 1, 1987
Acceptance Notification: July 1, 1987
Final Version Due: August 1, 1987
Conference Date: December 8-9, 1987

Conference Cornmltt¢,~;
Conference Co-Chairs:
Elliot Soloway
Dept. of Computer Science
Yale University
New Haven, CT 06520

Program Co-Chairs:
Gary Olson
Cognitive Science and
Machine Intelligence laboratory

The University of Michigan
904 Monroe Street
Ann Arbor, MI 48109

Local Arrangements:
Stan Rifkin
Master Systems
P.O. Box 7108
McLean, VA 22106

Bill Curtis
MCC
9430 Research Blvd.
Austin, TX 78759

Sylvia Sheppard
Computer Technology Associates
7501 Forbes Blvd.
Lanham, MD 29796

Program Committee:
Victor Basili
Deborah Boehm-Davis
Ruven Brooks
Marc Eisenstadt
Thomas Green
Jean-Michel I-lot
S. Sitharama lyengar
Clayton Lewis
Tony Norcio
Roy Pea
Ben Shneiderman
Kathleen Swigger
Marvin Zelkowitz
Nicholas Zvengintzov
Stuart Zweben

-3-

CALL FOR PAPERS

Sixth ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC87)

Vancouver, British Columbia, Canada
August 10-12, 1987

Original research contributions are sought that address fundamental issues in the theory and prac-
tice of distributed and concurrent systems. Topics of interest include, but are not limited to, the
following aspects of concurrent and distributed systems:

* Principles of distributed computation derived from practical experience with working sys-
tems

* Algorithms and complexity
* Specification, semantics, and verification
* Programming languages and programming language constructs
* Fault tolerance

Important Dates:

Jan. 30, 1987:
Apr. 10, 1987:
May 15, 1987:

Abstracts due.
Authors informed of acceptance or rejection.
A final copy of each accepted paper due, typed on special forms for

inclusion in the conference proceedings.

Please send eleven copies of a detailed abstract (not the complete paper), with the address, tele-
phone number, and net address (if available) of a contact author on the cover page, to the Program
Chair:

Fred B. Schneider
Department of Computer Science

Upson Hall
Cornell University
Ithaca, NY 14853

The abstract should be no more than 10 double-spaced typewritten pages. It must include a clear
description of the problem being discussed, comparisons with extant work, and a section on major
original contributions. There should be enough detail provided for the program committee to
make a decision.
Submissions that arrive late or are too long are likely to be rejected without consideration of
their merits.

Conference Chair: David Kirkpatlrick, University of British Columbia (kirk@ubc.csnet)
Publicity Chair: Tiko Kameda, Simon Fraser University (tiko%Iccr.sfu.cdn@ubc.csnet)

The Program Committee:
Andrew Birrell, DEC
Danny Dolev, Hebrew University
Nissim Francez, Technion
Eli Gafni, UCLA
Vassos Hadzilacos, Toronto

Leslie Lamport, DEC
Barbara Liskov, MIT
Michael Merritt, AT&T Bell Laboratories
Fred Schneider, Cornell
Eli Upfal, IBM Almaden

-4-

FOR IMMEDIATE RELEASE JULY 10, 1986

M A J O R C O N F E R E N C E P L A N N E D

ON HUMAN -- C O M P U T E R I N T E R A C T I O N

The major North American conference focusing on the improvement of in-
teraction between humans and computers will be held in Toronto, April 5 -
9, 1987.

The event will be unique because it will bring together specialists in com-
puter graphics and human-computer interaction to present research results,
discuss issues of mutual concern, and take part in specialized training
courses. "The conference will focus on helping make computers easier to
use", said conference Co-Chair Ron Baecker, Co-director of the Dynamic
Graphics Project at the University of Toronto.

The Conference, CHI + GI '87, encourages participation from both academia
and industry in the wide variety of disciplines involved in computer graph-
ics and human-computer interaction.

Of interest to practitioners, researchers, teachers, students, computer artists,
and others working in the field, the conference will include tutorials, in-
teractive poster sessions, videotape presentations, demonstrations, and an
electronic theatre evening featuring the latest in spectacular computer
graphics.

The Conference is a combination of CHI'87 (Human Factors in Computing
Systems) and GI '87 (Graphics Interface). The annual CHI conference (spon-
sored by the ACM (Association for Computing Machinery) Special Interest
Group on Computers and Human Interaction, SIGCHI) is the leading forum
for the presentation of original designs and research in all aspects of
human-computer interaction. The annual Graphics Interface conference,
sponsored by the Canadian Man-Computer Communications Society
(CMCCS), is the oldest regularly scheduled computer graphics conference.

Toronto is a major North American centre for research on and application of
enhanced computer human interfaces and computer graphics. More than
1,500 delegates are expected to attend the conference at the Toronto Hilton
Harbour Castle Hotel, April 5 - 9, 1987.

- 3 0 -

A copy of the Call for Participation is included with this press release.

For Further Information:
Wendy Walker
CHI + GI 1987 Conference Office
Computer Systems Research Institute
University of Toronto
2002 - 10 Kings College Road
Toronto, Ontario, Canada M5S 1A4

Phone: 416-978-5184
Electronic mail: WWalker.CHI@Xerox.,

-5 -

Nominations for SIGPLAN Executive Committee

The SIGPLAN nominating committee (Mary S. Van Deusen and Steven S.
Muchnick) have put together the following slate for the SIGPLAN 1987
election:

Chair:
Vice-chair:
Sec/Treasurer:
Members-at-large:

Mark Scott Johnson and Robert F. Mathis
Teri F. Payton and David S. Wise
Robert H. Halstead and Peter S. Mager
Frances E. Allen, Stuart I. Feldman, David A. Fisher,

Brent T. Hailpern, Julian A. Padget

ACM and SIGPLAN by-laws require that all members of SIGPLAN be notified
of their right to nominate candidates by petition. The ballot does not
discriminate between candidates selected by the nominating committee and
those who choose to run by petition. Members wishing to petition for
candidacy must, by March 15, 1987, inform the following three individuals
of their intention to petition.

Pat Ryan
ACM
ii West 42nd Street
New York, New York 10036

Teri F. Payton
SIGPLAN Secretary
SDC, A Burroughs Company
PO Box 517
Paoli, Pennsylvania 19301

Doris K. Lidtke
SIGBOARD Area E Director
Computer and Information Science
Towson State University
Baltimore, Maryland 21204

Upon notification of intent to petition, ACM headquarters will send you
the appropriate petition forms. You must acquire 103 signatures of voting
SIGPLAN members on these forms (one percent of SIGPLAN membership) and
return the forms to ACM headquarters (Pat Ryan) by April 15, 1987 for
verification of voting member status.

correspondence from the members -6-

PASCAL PERVERSIONS

Philip Machanick, Craig Levieux and Paul Dadswell
Computer Science Department, University of the Witwatersrand

I Jan Smuts Ave, BRAAMFOhqfEIN 2001, South Africa.

1 in a ser ies

PROGRAM perverse(output);
VAR integer : real;

PROCEDURE aha;
VAR real : -maxint..maxint;

BEGIN
real := 5;
integer := 5.4;
write('real',real,' integer =',integer);
END;

BEGIN aha; END.

#2

program MOREPERVERSE (0UTPUT,INPUT);
const FALSE = TRUE;

begin
if FALSE then WRITE('true')

else WRITE('false');
end.

and # 3

PROGRAMbizzare (output);
CONST truth = false;

PROCEDURE a;
CONST false = true;

PROCEDURE b;
CONST true = truth;

BEGIN
CASE 5 < 4 OF

true : write('5 is less than 4');
false : write('5 is not less than 4');

END;
END;

BEGIN
b;

END;

BEGIN
a;

END.

All of the above programs compiled and executed successfully on the IBM
Pascal/VS compiler running the "standard" option under CMS.

2
@'Nil

- 7 -

N.I.A.L. Systems Limited P.O. Box 280, Alexandria Bay, New York 13607-0280 1-800-267-0660

D r , R i c h a r d W e x e l b l a t , E d : L t o r
S I i3F:'L..AN N o t i ~: es
I::'h i i ,k p s L . . a b c w a t o r i es

Z-;45 Sc:ar h o t o u t : h R o a d
Briar'c:::tJ..F-F M a n o r ~ N'f 1051(3

Dear D r , We>,' e l b l a t

Ir~ t h e n o t e ,i:r"om Edwar ' d C h e f 1 i n o f AI::'t... M a r ' k e t News d a t e d J u n e
12~ 1 9 8 6 , w h i c h y o u k i n d l y p r i n t : e d i n t l " ,e S IGF 'LAN r l o t i c : e s ~ t h e r e
w a s an u n . f o r ' t u r , a t . e t y p o g r a p h i c a l e r r o r i n o u r ' t e l e p h o r ~ e n u m b e r .

'[he correct number for- 'toll.--free calls ~rom the LJ.S. is:

1 --" 8 (~ O - 2 6 7 "- 0 6 6 0

F:'ersor~s who c:all that numl]er' may requesh a ~r-ee r'eprir"~t o{
Mr. CI,er"lin's r'eview o{: Q'Nial whi(:h was rec:ent, ly published in

APL M a r k e t News.

As well, we h a v e m o v e d t o a n e w o 4 : f i c : e and use F: ' ,0. Box 2128,

K:Lngstor 'J ON K7L 5 J 8 a s t h e m a i l i n g a d d r e s s .

A " s t a r ' t e r v e r ' s i o n of Q'Nial is n o w available 4 o r ' the IBM F C
f a r t h e g r a n d s u m o f : ! V 9 9 . 0 0 LJ.S. I h i s p r " i c ' e i n c l u d e s t h e
d¢~c:um.er" , ' t a t : io r ' , a n d s h i p p i n g e . x p e r ~ s e s . f t ' , : t s v e r ' s i o n i m p l e m e n t s
m o s t o.i: t h e a r r a y t h e o r ' y b u t d o e s n o b i n c : l u d e s o m e o f t h e
a d v a n c e d . { : e a t . u r e s ~four, d i n t h e r e g u l a r Q ' N i a l .

An "enhancied" Q'Nial with an Ar'ti.Ficial Inte].ligence Toolkit

- w i l l b e a v a i l a b l e i n D e c e m b e r " 8 6 .

We a p p r e c i a t e y o u r a s s : k s t a n c e i n a d v i s i n g t h e s c : i e n t i f i c :
c o m m u n i t y o-F t . h i s l n t e r e s ' t : i n g p r o d u c : t .

Si n c e r e l y

W i l l i a m H . .i." ::' s

P r e s i d e n t'_.

~'Nial is a registered trademark of Queen's University at Kingston, Ontario.
The (~'Nial interpreter is the product of research in Computer Science at Queen%.

- 8 -
Twente University of Technology DEPARTMENT OF COSMPUTER SCIENCE

P,O, BOX 217 - 7500 AE ENSCHEDE
THE NETHERLANDS,

Dr. Richard L. Wexelblat

Editor SIGPLAN Notices

Your reference Our reference

Dear Dr. Wexelblat:

Phone 053- Date 30 Sept 1986

In my contribution to the Sept 1986 issue of SIGPLAN Notices entitled

"A Useful Application of Formal Procedure Parameters" a small error

slipped through. The procedure as given prints the path from root to

leaf except for the last item. It can be corrected by replacing the call

to "path" in the body of "paths ~ by the call ~localpath'.

I would like to apologize for this error and I also would like to

thank the readers of SIGPLAN Notices who brought it to my attention.

Sincerely,

Peter van Eijk

uucp: decvax~mcvax:utrcul~infpve

-9-

ANSI/IEEE
Std 754.1985

An American National Standard

IEEE Standard for
Binary Floating-Point Arithmetic

Sponsor

Standards Committee of the
IEEE Computer Society

Approved March 21, 1985

IEEE Standards Board

Approved July 26, 1985

American National Standards Institute

© Copyright 1985 by

The Institute of Electrical and Electronics Engineers, Inc
345 East 47th Street, New York, NY 10017, USA

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise,

without the prior written permission of the publisher.

Reprinted by permission of IEEE. Further copies may not be made.

- 1 0 -

IEEE Standm'ds documents are developed within the Technical Commit-
tees of the IEEE Societies and the Standards Coordinating Committees of
the IEEE SUmdards Board. Members of the committees serve vo|untarfiy
and without compensation. They are not necessarily members of the In-
stitute. The standards developed within IEEE represent a consensus of the
broad expertise on the subject within the Institute as well as those acctivi-
ties outside of IEEE which have expressed an interest in participating in
the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE
Standard does not imply that there are no other ways to produce, test,
measure, purchase, market, or provide other goods and services related to
the scope of the IEEE Standard. Furthermore, the viewpoint expressed at
the time a standard is approved and issued is subject to change brought
about through developments in the state of the art and comments received
from users of the standard. Every IEEE Standard is subjected to review at
least once every five years for revision or reaflh'mation. When a document
is more than five years old, and has not been reafl]rmed, it is reasonable to
conclude that its contents, although still of some value, do not wholly
reflect the present state of the art. Users are cautioned to check to deter-
mine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any inter-
ested party, regardless of membership aeiliation with IEEE. Suggestions
for changes in documents should be in the form of a proposed change of
text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning
of portions of standards as they relate to specific applications. When the
need for interpretations is brought to the attention of IEEE, the Institute
will initiate action to prepare appropriate responses. Since IEEE Standards
represent a consensus of all concerned interests, it is important to ensure
that any interpretation has also received the concurrence of a balance of
interests. For this reason IEEE and the members of its technical commit-
tees are not able to provide an instant response to interpretation requests
except in those cases where the matter has previously received formal
consideration.

Comments on standards and requests for interpretations should be ad-
dressed to:

Secretary, IEEE Standards Board
345 East 47th Street
New York, NY 10017
USA

- 1 1 -

F o r e w o r d

(This Foreword ~ not a part of ANSI/IEEE Std 754-t985, IEEE Standard for Binary Floating-Point Arithmetic.)
Th~ standard is a product of the Floar2ng-Point Working Group of the Microprocessor Standards

Subcommittee of the Standards Committee of the IEEE Computer Society. This work was sponsored by
the Technical Committee on Microprocessors and Minicomputers. Draft 8.0 of this standard was pub-
fished to solicit public conunents? Implementation techniques can be found in An Implementation
Guide to a Proposed Standard for Fh~ating-Point Arithmetic by Jerome T. Coonen, 2 which was based
on a siill earlier draft of the proposal.

This standard defines a family of commercially feasible ways for new systems to perform binary
floating-point arithmetic. The issues of retrofitting were not considered. Among the desiderata that
guided the formulation of this standard were

(1) Facilitate movement of existing programs from diverse computers to those that adhere to this
standard.

(2) Enhance the capabilities and safety available to programmers who, though not expert in numerical
methods, may well be attempting to produce numerically sophisticated programs. However, we recog-
nize that utility and safety are sometimes antagonists.

(3) Encourage experts to develop and distribute robust and efficient numerical programs that are
portable, by way of minor editing and recompilation, onto any computer that conforms to this standard
and possesses adequate capacity. When restricted to a declared subset of the standard, these programs
should produce identical results on all conforming systems.

(4) Provide direct support for
(a) Execution-time diagnosis of anomalies
(b) Smoother handling of exceptions
(c) Interval arithmetic at a reasonable cost

(5) Provide for development of
(a) Standard elementary functions such as exp and cos
(b) Very high precision (multiword) arithmetic
(c) Coupling of numerical and symbolic algebraic computation

(6) Enable rather than preclude further refinements and extensions.

IComputter Magaz./ne vol 14, no 3, March 1I)81.
2Computter Magaz/ne vol 13, no 1, Jmmary lgS0.

- 1 2 -

Members of the Floating-Point Working Group of the Microprocessor Standards Subcommittee and
those who participated by correspondence were as follows:

David Stevenson, Chairman

Andrew Allison Paul F. Flanagan John C. Nash
William Ames Gordon Force Dan O'Dowd
Mike Arya Lloyd Fosdick Cash Olsen
Janis Baron Robert Fraley A. Padegs
Steve Baumel Howard Fullmer John F. Palmer
Dileep Bhandarkar Daniel D. Gajski Beresford Parlett
Joel Boney David M. Gay Dave Patterson
E.H. Bristol C.W. Gear Mary H. Payne
Werner Buchholz Martin Graham Tom Pittman
Jim Bunch David Gustavson Lew Randall
Ed Burdick Guy K. Haas Robert Reid
Gary R. Burke Kenton Hanson Christian Reinsch
Paul Clemente Chuck Hastings Frederic N. Ris
W.J. Cody David Hough Stan Schmidt
Jerome T. Coonen John Edward Howe Van Shahan
Jim Crapuchettes Thomas E. Hull Robert L. Smith
Itzhak Davidesko Suren Imkulla Roger Stafford
Wayne Davison Richard E. James III G.W. Stewart
R.H. Delp Paul S. Jensen Robert Stewart
James Demmel W. Kahan Harold S. Stone
Donn Denman Howard Kaikow W.D. Strecker
Alvin Despaln Richard Karpinski Robert Swarz
Augustin A. Dubrulle Virginia Klema George Taylor
Tom Eggers Les Kohn James W. Thomas
Philip J. Falllace Dan Kuyper Dar-Sun Tsien
Richard Fateman M. Dundee Maples Greg Walker
David Feign Roy Martin John Steven Walther
Don Feinberg William H. McAllister Shlomo Waser
Stuart Feldman Colin McMaster P.C. Waterman
Eugene Fisher Dean Miller Charles White

Webb Miller

When the IEEE Standards Board
membership:

John E. May, Chairman

James H. Beall
Fletcher J. Buckley
Rene Castenschiold
Edward Chelotti
Edward J. Cohen
Paul G. Cummings
Donald C. Fleckenstein

approved this standard on March 21, 1985, it had the following

John P. Riganati, Vice Chairman

Sava I. Sherr, Secretary

Jay Forster
Daniel L. Goldberg
Kenneth D. Hendrix
Irvin N. Howell, Jr
Jack Kinn
Joseph L. Koepflnger*
Irving Kolodny
R.F. Lawrence

Lawrence V. McCall
Donald T. Michael*
Frank L. Rose
Clifford O. Swanson
J. Richard Weger
W.B. Wilkens
Charles J. Wylie

*Member emeritus

- 1 3 -

C o n t e n t s

SECTION PAGE

1. S c o p e . 7
1.1 I m p l e m e n t a t i o n Ob jec t i ve s . 7
1.2 I nc lu s ions . 7
1.3 E x c l u s i o n s . 7

2. Def in i t ions . 7

3. F o r m a t s . 8
3.1 Se t s of Va lues . 8
3.2 Bas ic F o r m a t s . 9
3.3 E x t e n d e d F o r m a t s . 10
3.4 C o m b i n a t i o n s of F o r m a t s . 10

4. R o u n d i n g . 10
4.1 R o u n d to N e a r e s t . 10
4.2 Di rec t ed R o u n d i n g s . 10
4.3 R o u n d i n g P r e c i s i o n . 10

5. O p e r a t i o n s . 11
5.1 Ar i t hme t i c . 11
5.2 Square R o o t . 11
5.3 F loa t i ng -Po in t F o r m a t C o n v e r s i o n s . 11
5.4 C o n v e r s i o n s B e t w e e n F loa t i ng -Po in t a n d In t ege r F o r m a t s . 11
5.5 R o u n d F loa t i ng -Po in t N u m b e r to In t ege r Value . 11
5.6 Binary-q-D-Decimal Conve r s ion . 11
5.7 C o m p a r i s o n . 12

6. Infinity, NaNs, a n d S igned Zero . 13
6.1 Infini ty A r i t h m e t i c . 13
6.2 O p e r a t i o n s wi th NaNs . 13
6.3 The Sign Bi t . 14

7. E x c e p t i o n s . 14
7.1 Inva l id O p e r a t i o n . 14
7.2 Divis ion b y Zero . 14
7.3 Over f low . 14
7.4 Unde r f low . 15
7.5 I n e x a c t . 15

8. T r a p s . 15
8.1 T rap H a n d l e r . 15
8.2 P r e c e d e n c e . 16

FIGURES

Fig 1. S ingle F o r m a t . 9
F i g 2. Doub le F o r m a t . 9

TABLES
T a b l e 1.
T a b l e 2.
T a b l e 3.
T a b l e 4.

APPENDIX

S u m m a r y o f F o r m a t P a r a m e t e r s . 9
Dec ima l Conve r s ion R a n g e s . 11
Cor r ec t l y R o u n d e d D e c i m a l C o n v e r s i o n Range . 12
P r e d i c a t e s and R e l a t i o n s . 13

R e c o m m e n d e d F u n c t i o n s and P r e d i c a t e s . 17

- 1 4 -

An American National Standard

IEEE Standard for
Binary Floating-Point Arithmetic

1. Scope 2. Def in i t ions

1.1 Implementat ion Objectives. It is intended
that an implementation of a floating-point system
conforming to this standard can be realized en-
tirely in software, entirely in hardware, or in any
combination of software and hardware. It is the
environment the programmer or user of the sys-
tem sees that conforms or fails to conform to
this standard. Hardware components that require
software support to conform shall not be said to
conform apart from such software.

1.2 Inclusions. This standard specifies
(1) Basic and extended floating-point number

formats
(2) Add, subtract, multiply, divide, square root,

remainder, and compare operations
(3) Conversions between integer and floating-

point formats
(4) Conversions between different floating-

point formats
(5) Conversions between basic format floating-

point numbers and decimal strings
(6)Floating-point exceptions and their ham

dling, including nonnumbers (NaNs)

1.3 Exclusions. This standard does not specify
(1) Formats of decimal strings and integers
(2) Interpretation of the sign and significand

fields of NaNs
(3) Binary-~-~decimal conversions to and from

extended formats

biased exponent. The sum of the exponent and
a constant (bias) chosen to make the biased ex-
ponent's range nonnegative.

binary floating-point number. A bit-string char-
acterized by three components: a sign, a signed
exponent, and a signiticand. Its numerical value,
if any, is the signed product of its significand and
two raised to the power of its exponent. In this
standard a bit-string is not always distinguished
from a number it may represent.

denormalized number. A nonzero floating-point
number whose exponent has a reserved value,
usually the format's minimum, and whose ex-
plicit or implicit leading signilicand bit is zero.

destination. The location for the result of a bi-
nary or unary operation. A destination may be ei-
ther explicitly designated by the user or
implicitly supplied by the system (for example,
intermediate results in subexpressions or argu-
ments for procedures). Some languages place the
results of intermediate calculations in destina-
tions beyond the user's control. Nonetheless, this
standard defines the result of an operation in
terms of that destination's format and the oper-
ands' values.

exponent. The component of a binary floating-
point number that normally signifies the integer

7

ANSI/IEEE
Std 754-1985

power to which two is raised in determining the
value of the represented number. Occasionally
the exponent is called the signed or unbiased ex-
ponent.

f rac t ion . The field of the significand that lies to
the right of its implied binary point.

mode. A variable that a user may set, sense,
save, and restore to control the execution of sub-
sequent arithmetic operations. The default mode
is the mode that a program can assume to be in
effect unless an explicitly contrary s ta tement is
included in either the program or its specifica-
tion. The following mode shall be implemented:
rounding, to control the direction of rounding er-
rors. In certain implementations, rounding preci-
sion may be required, to shorten the precision of
results.
The implementor may, at his option, implement
the following modes: traps disabled/enabled, to
handle exceptions.

NaN. Not a number, a symbolic entity encoded
in floating-point format. There are two types of
NaNs (6.2). Signaling NaNs signal the invalid op-
eration except ion (7.1) whenever they appear as
operands. Quiet NaNs propagate through almost
every arithmetic operation without signaling ex-
ceptions.

r e s u l t . The bit string (usually representing a
number) that is delivered to the destination.

s i g n i f i c a n d . The component of a binary floating-
point number that consists of an explicit or im-
plicit leading bit to the left of its implied binary
point and a fraction field to the right.

shal l . The use of the word Mud/ signifies that
which is obligatory in any conforming implemen-
tation.

s h o u l d . The use of the word shou/d signifies that
which is strongly recommended as being in keep-
ing with the intent of the standard, although ar-
chitectural or other constraints beyond the scope
of this s tandard may on occasion render the rec-
ommendat ions impractical.

s t a t u s f lag . A variable that may take two states,
set and clear. A user may clear a flag, copy it, or
res tore it to a previous state. When set, a status

- 1 5 -

IEEE STANDARD FOR

flag may contain additional system-dependent in-
formation, possibly inaccessible to some users.
The operations of this standard may as a side
effect set some of the following flags: inexact re-
sult, underfiow, overflow, divide by zero, and in-
valid operation.

user . Any person, hardware, or program not it-
self specified by this standard, having access to
and controlling those operations of the program-
ming environment specified in this standard.

3. F o r m a t s

This standard defines four floating-point for-
mats in two groups, basic and extended, each
having two widths, single and double. The stand-
ard levels of implementation are distinguished by
the combinations of formats supported.

3.1 Sets o f Values . This section concerns only
the numerical values representable within a for-
mat, not the encodings. The only values repre-
sentable in a chosen format are those specified
by way of the following three integer parameters:

p = the number of significand bits (preci-
sion)

Eraax = the maximum exponent
Emin = the minimum exponent

Each format 's parameters are given in Table 1.
Within each format only the following entities
shall be provided:

Numbers of the form (-1)s2E(bo.blb~...b~_l)

where
s = O o r l
E = any integer between Emin and Emax,

inclusive
b~ = 0 or 1

Two infinities, +~ and - ~
At least one signaling NaN
At least one quiet NaN

The foregoing description enumerates some
values redundantly, for example, 2°(1 "0) =
21(0 • 1) = 22(0 • 01) However, the encod-
ings of such nonzero values may be redundant
only in extended formats (3.3). The nonzero val-
ues of the form ±2EmiR(0 " bibs "'" bp-O are called
denormalized. Reserved exponents may be used
to encode NaNs, ±~, ±0, and denormalized hum-

BINARY FLOATING-POINT ARITHMETIC

- t 6 -

T a b l e 1
S u m m a r y o f F o r m a t P a r a m e t e r s

ANSI/IEEE
Std 754-1986

Format

Parameter Single Double
Single Extended Double Extended

p 24 >_ 32 53 _> 64
Eraax + 127 _> + 1023 + 1023 >_ + 16383
Emi n - 126 <- - 1022 - 1022 ~- - 16382
Exponent b/as + 127 unspecified + 1023 unspecified
Exponent width in bits 8 _> 11 11 -> 15
Format width in bits 32 >_ 43 64 --> 79

bers . F o r any va r i ab le tha t h a s the va lue zero , the
s ign b i t s p r o v i d e s a n e x t r a b i t o f in fo rmat ion .
A l t h o u g h all f o r m a t s have d i s t i nc t r e p r e s e n t a -
t ions fo r + 0 a n d - 0 , the s igns a re s ign i f ican t in
s o m e c i r c u m s t a n c e s , such a s d iv i s ion by zero,
and n o t in o thers . In th is s t a n d a r d , 0 and ~ a re
wr i t t en w i t h o u t a s ign w h e n the s ign is n o t im-
po r t an t .

3.2 Basic Formats. N u m b e r s in t he s ingle and
d o u b l e f o r m a t s a re c o m p o s e d of t he fo l lowing

th ree fields:

(1) 1-bit s ign s
(2) B ia sed e s p o n e n t e = E + b / a s
(3) F r a c t i o n f = • b , b2 " " b p _ ,

The r a n g e o f the u n b i a s e d e x p o n e n t E sha l l in-
c lude eve ry in t ege r b e t w e e n t w o v a l u e s Em~, and
Emax, inc lus ive , and a l so two o t h e r r e s e r v e d val-

ue s Emin-1 to e n c o d e -+ 0 and d e n o r m a l i z e d num-
bers , and E m ~ . + l to e n c o d e _+~ and NaNs. The
fo rego ing p a r a m e t e r s a r e g iven in Tab le 1. E a c h
nonz e ro n u m e r i c a l va lue h a s j u s t one encod ing .
The f ie lds a r e i n t e r p r e t e d as fo l lows:

3.2.1 S i n g l e . A 32-bit s ingle f o r m a t n u m b e r X
is d iv ided as s h o w n in F ig 1. The va lue v of X is
i n fe r r ed f r o m its c o n s t i t u e n t f ie lds thus

(1) If e = 255 a n d f ¢ 0, t hen v is NaN regard-
less of s

(2) If e = 255 a n d f = 0, t hen v = (- 1) s ~
(3) ff 0 < e < 255, t hen v = (- 1) s 2 e - ~ 7 (l o f)
(4) I f e = 0 a n d f ~ 0, t hen v = (- 1) s 2 - ~ 6 (0 - f)

(d e n o r m a l i z e d n u m b e r s)
(5) If e = 0 a n d f = 0, t hen v = (- 1) s 0 (zero)

3.2.2 D o u b l e . A 64-bit d o u b l e f o r m a t n u m b e r
X is d iv ided as s h o w n in F ig 2. The v a l u e v of X
is i n fe r r ed f rom i t s c o n s t i t u e n t f ie lds t hus

1

msb

Fig 1
Single Format

msb m e a n s most significant bit
Isb m e a n s / e a s t significant b#

8 23

e f

Isb msb Isb

. , . w id ths

... order

1 11

msb Isb

Fig 2
Double Format

52

msb Isb

• .. widths

• . . order

- 1 7 -

ANSI/IEEE
Std 754-1985

(1) If e = 2047 a n d f ~: 0, then v is NaN regard-
less of s

(2) ff e = 2047 a n d f = 0, then v = (- 1) ' ~
(3) ff 0 < e < 2047, then v = (-1)s2e-l°23(l°f)
(4) f i e = 0 a n d f ~e 0, t henv = (- • s 2-1°22(0 "f~

(denormalized numbers)
(5) f i e = 0 a n d f = 0, t h e n v = (- 1) s0 (ze ro)

3.3 E x t e n d e d F o r m a t s . The single extended and
double extended formats encode in an implemen-
tat ion-dependent way the sets of values in 3.1
subject to the constraints of Table 1. This stand-
ard allows an implementation to encode some
values redundantly, provided that redundancy be
t ransparent to the user in the following sense: an
implementation either shall encode every non-
zero value uniquely or it shall not distinguish re-
dundant encodings of nonzero values. An
implementation may also reserve some bit strings
for pmlaoses beyond the scope of this standard.
When such a reserved bit string occurs as an op-
erand the result is not specified by this standard.

An implementation of this standard is not re-
quired to provide (and the user should not as-
sume) that single extended have greater range
than double.

3.4 Combina t ions of F o r m a t s . All implementa-
tions conforming to this standard shall support
the single format. Implementations should sup-
port the extended format corresponding to the
widest basic format supported, and need not sup-
port any other extended format?

4. Rounding

Rounding takes a number regarded as infinitely
precise and, if necessary, modifies it to fit in the
destination's format while signaling the ipexact
except ion (7.5). Except for binary = = decimal
conversion (whose weaker conditions are spec-
ified in 5.6), every operation specified in Section
5 shall be performed as if it first produced an
intermediate result correc t to infinite precision
and with unbounded range, and then rounded
that result according to one of the modes in this
sectlcm.

The rounding modes affect all arithmetic oper-
ations except comparison and remainder. The

sOniy ff upward compatibility and speed are important is-
sues should a system supporting the double extended format
also support ,,dngle extended.

IEEE STANDARD FOR

rounding modes may affect the signs of zero
sums (6.3), and do affect the thresholds beyond
which overflow (7.3) and underflow (7.4) may be
signaled.

4.1 Round to Nearest . An implementation of this
standard shall provide round to nearest as the
default rounding mode. In this mode the repre-
sentable value nearest to the infinitely precise re-
sult shall be delivered; ff the two nearest
representable values are equally near, the one
with its least significant bit zero shall be deliv-
ered. However, an infinitely precise result with
magnitude a t l e a s t 2Emax(2--2 -p) shall round to 00
with no change in sign; here Emax and p are de-
termined by the destination format (see Section
3) unless overridden by a rounding precision
mode (4.3).

4.2 Directed Roundings. An implementation
shall also provide three user-selectable directed
rounding modes: round toward +o% round
toward - ~ , and round toward 0.

When rounding toward + ~ the result shall be
the format 's value (possibly +o0) closest to and
no less than the infinitely precise result. When
rounding toward -0o the result shall be the for-
mat's value (possibly - ~) closest to and no
greater than the infinitely precise result. When
rounding toward 0 the result shall be the for-
mat's value closest to and no greater in magni-
tude than the infinitely precise result.

4.3 R o u n d i n g Prec is ion . Normally, a result is
rounded to the precision of its destination. How-
ever, some systems deliver results only to double
or extended destina~ons. On such a system the
user, which may be a high-level language com-
piler, shall be able to specify that a result be
rounded instead to single precision, though it
may be s tored in the double or extended format
with its wider exponent range. 4 Similarly, a sys-
tem that delivers results only to double extended
destinations shall permit the user to specify
rounding to single or double precision. Note that
to meet the specifications in 4.1, the result cannot
suffer more than one rounding error.

4Control of rounding precision is intended to allow systems
whose d e . n a t i o n s are always double or extended to mimic,
in the absence of over/undertow, the precisions of systems
with single and double de~dnaflons. An implementmiou
should not provide operations that combine double or ex-
tended operands to produce a single result, nor operations
that combine double extended operands to produce a double
result, with only one rounding.

10

-18-

BINARY FLOATING-POINT ARrrHMETIC

5. Operations

All conforming implementations of this stand-
ard shall provide operations to add, subtract,
multiply, divide, extract the square root, find the
remainder, round to integer in floating-point for-
mat, convert between different floating-point for-
mats, convert between floating-point and integer
formats, convert binary -~-~ decimal, and com-
pare. Whether copying without change of format
is considered an operation is an implementation
option. Except for binary ~ decimal conversion,
each of the operations shall be performed as if it
first produced an intermediate result correct to
infinite precision and with unbounded range, and
then coerced this intermediate result to fit in the
destination's format (see Sections 4 and 7). Sec-
tion 6 augments the following specifications to
cover ±0, ±~, and NaN; Section 7 enumerates
exceptions caused by exceptional operands and
exceptional results.

5.1 Ari thmetic . An implementation shall provide
the add, subtract, multiply, divide, and remainder
operations for any two operands of the same for-
mat, for each supported format; it should also
provide the operations for operands of differing
formats. The destination format (regardless of
the rounding precision control of 4.3) shall be at
least as wide as the wider operand's format. All
results shall be rounded as specified in Section 4.

When y ~: 0, the remainder r = x REM y is
defined regardless of the rounding mode by the
mathematical relation r = x - y x n, where n is
the integer nearest the exact value x /y; whenever
] n - x / y l = ½, then n is even. Thus, the re-
mainder is always exact. If r = 0, its sign shall
be that of x. Precision control (4.3) shall not
apply to the remainder operation.

5.2 Square Root. The square root operation
shall be provided in all supported formats. The
result is defined and has a positive sign for all
operands >_ 0, except that ~ - 0 shall be -0 . The
destination format shall be at least as wide as
the operand's. The result shall be rounded as
specified in Section 4.

5.3 Floating-Point Format Conversions. It
shall be possible to convert floating-point num-
bers between all supported formats. If the con-
version is to a narrower precision, the result

ANSI/IEEE
Std 754-I~5

shall be rounded as specified in Section 4. Con-
version to a wider precision is exact.

5.4 Conversion Between F loa t ing-Poin t and
Integer Formats . It shall be possible to convert
between all supported floating-point formats and
all supported integer formats. Conversion to in-
teger shall be effected by rounding as specified
in Section 4. Conversions between floating-point
integers and integer formats shall be exact unless
an exception arises as specified in 7.1.

5.5 Round Floating-Point Number to Integer
Value. It shall be possible to round a floating-
point number to an integral valued floating-point
number in the same format. The rounding shall
be as specified in Section 4, with the understand-
ing that when rounding to nearest, if the differ-
ence between the unrounded operand and the
rounded result is exactly one half, the rounded
result is even.

5.6 Binary ~ Decimal Conversion. Conversion
between decimal strings in at least one format
and binary floating-point numbers in all sup-
ported basic formats shall be provided for num-
bers throughout the ranges specified in Table 2.
The integers M and N in Tables 2 and 3 are such
that the decimal strings have values ±M × 10 ±N.
On input, trailing zeros shall be appended to or
stripped from M (up to the limits specified in
Table 2) so as to minimize N. When the destina-
tion is a decimal string, its least significant digit
should be located by format specifications for
purposes of rounding.

When the integer M lies outside the range
specified in Tables 2 and 3, that is, when M >_ 10 9
for single or 10 ~7 for double, the implementor
may, at his option, alter all significant digits after
the ninth for single and seventeenth for double
to other decimal digits, typically 0.

Conversions shall be correctly rounded as
specified in Section 4 for operands lying within

Table 2
Decimal Conversion Ranges

Format
Decimal to Binary Binary to Decimal
MaxM MaxN MaxM MaxN

Single l(P- I 99 IiF- I 53
Double 1017-1 999 I017- I 340

11

- 1 9 -

ANSI/IEEE
Std 754-1985

the ranges specified in Table 3. Otherwise, for
rounding to nearest, the error in the converted
result shall not exceed by more than 0.47 units in
the destination's least significant digit the error
that is incurred by the rounding specifications of
Section 4, provided that exponent over/under-
flow does not occur. In the directed rounding
modes the error shall have the correct sign and
shall not exceed 1.47 units in the last place.

Conversions shall be monotonic, that is, in-
creasing the value of a binary floating-point num-
ber shall not decrease its value when converted
to a decimal string; and increasing the value of a
decimal string shall not decrease its value when
converted to a binary floating-point number.

When rounding to nearest, conversion from bi-
nary to decimal and back to binary shall be the
identity as long as the decimal string is carried to
the maximum precision specified in Table 2,
namely, 9 digits for single and 17 digits for dou-
ble. 5

ff decimal to binary conversion over/under-
flows, the response is as specified in Section 7.
Over /unde r tow and NaNs and infinities encoun-
tered during binary to decimal conversion should
be indicated to the user by appropriate strings.
NaNs encoded in decimal strings are not spec-
ified in this standard.

To avoid inconsistencies, the procedures used
for binary ~ decimal conversion should give the
same results regardless of whether the conver-

Table 3
Correctly Rounded Decimal Conversion Range

Format
Decimal to Binary Binary to Decimal

M a x M M a x N M a x M M a x N

Single I{F- 1 13 10 ° - 1 13
Double 10 Iv- 1 27 101 ~ - 1 27

IEEE STANDARD FOR

sion is performed during language translation (in-
terpretation, compilation, or assembly) or during
program execution (run-time and interactive in-
put/output).

5.7 Compar i son . It shall be possible to compare
floating-point numbers in all supported formats,
even ff the operands' formats differ. Comparisons
are exact and never overflow nor undedlow.
Four mutually exclusive relations are possible:
less than, equal, greater than, and unordvred.
The last case arises when at least one operand is
NaN. Every NaN shall compare unordered with
everything, including itseff. Comparisons shall ig-
nore the sign of zero (so +0 = - 0) .

The result of a comparison shall be delivered
in one of two ways at the implementor 's option:
either as a condition code identifying one of the
four relations listed above, or as a true-false re-
sponse to a predicate that names the specific
comparison desired. In addition to the true-false
response, an invalid operation except ion (7.1)
shall be signaled when, as indicated in Table 4,
last column, unordered operands are compared
using one of the predicates involving < or > but
not ? (Here the symbol ? signifies unordered) .

Table 4 exhibits the twenty-six functionally dis-
tinct useful predicates named, in the first column,
using three notations: ad hoc, FORTRAN-like, and
mathematical. It shows how they are obtained
from the four condition codes and tells which
predicates cause an invalid operation except ion
when the relation is unordered. The entries T
and F indicate whether the predicate is true or
false when the respective relation holds.

Note that predicates come in pairs, each a log-
ical negation of the other; applying a prefix such
as NOT to negate a predicate in Table 4 reverses
the true/false sense of its associated entries, but
leaves the last column's entry unchanged, e

Implementations that provide predicates shall
provide the first six predicates in Table 4 and
should provide the seventh, and a means of log-
ically negating predicates.

SThe properties specified for conversions are implied by er-
ror bounds that depend on the format (single or double) and
the number of decimal digits involved: the 0.47 mentioned is
a worst-case bound only. For a detailed discussion of these
error bounds and economical conversion algorithms that ex-
ploit the extended format, see COONEN, SEROME T. Contri-
butions to a Proposed Standard f o r Binary l~oating-Point
Arithmetic. PieD. Thesis, University of CaUforni_a, Berkeley,
CA, 1984.

eThere may appear m be two ways to write the logical
negation of a predicate, one using NOT explicitly and the
other reversing the relational operator. For example, the log-
ical negation of (X = Y) may be written either NOT(X = Y) or
(X?< > Y); in this case both expreasions are funclionally
equivalent to (X ~ Y). However, this coincidence does not oc-
cur for the other predicates. For example, the logical nega-
tion of (X < Y) is just NOT(X < Y), the reversed predicate
(X ?>--Y) is different in that it does not signal an invalid
operation exception when X and Y are unordere~

12

BINARY FLOATING-POINT ARITHMETIC

- 2 0 -

Table 4
Predicates and Relations

ANSI/IEEE
Std 754-1985

Predicates

Ad hoc FORTRAN Math
Greater

Relations

Less
Than Equal Unordered

Exception

Invalid If
Unordered

= .EQ. =
? < > .NE. ~ T

> .GT. > T
> = .GE. -> T
< .iT. <

< = .LE. _<
? unordered

< > .LG. T

< = > .LEG. T
?> .UG. T

?> = .UGE. T
?< .UL.

?< = .ULE.
? = .UE.

F F T F
T F T

F F F
F T F

F T F F
F T T F
F F F T

T

T

F T
F T
F

T
F F T
F T T

F T
T T

F T T

F

F

Yes
Yes
Yes
Yes

Yes

Yes

No
No

No

No
No
No
No
No

NOT(>)
NOT(> =)
NOT(<) T

NOT(< =) T
NOT(?) T

N O T (< >)

NOT(< = >)
NOT(?>)
NOT(?> =)
NOT(?<) T
NOT(?< =) T
NOT(?=) T

F T T T
F T F T

F T T
F F T

T T F

F F T T

F F F T
F T T F
F T F F

F T F
F F F

T F F

Yes
Yes
Yes
Yes

Yes

Yes

No

No
No
No
No
No

6. Inf in i ty , N a N s , and S igned Zero

6.1 Infinity Arithmetic. Infinity arithmetic shall
be construed as the limiting case of real arithme-
tic with operands of arbitrarily large magnitude,
when such a limit exists. Iniinites shall be inter-
preted in the afline sense, that is, -oo<(every
finite number)< +oo.

Arithmetic on 0o is always exact and therefore
shall signal no exceptions, except for the invalid
operations specified for ~ in 7.1. The exceptions
that do pertain to o0 axe signaled only when

(1) ~ is created from finite operands by over-
flow (7.3) or division by zero (7.2), with corre-
sponding trap disabled

(2) ~ is an invalid operand (7.1).

6.2 Operations with NaNs. Two different kinds
of NaN, signaling and quiet, shall be supported in
all operations. Signaling NaNs afford values for
unlnitialized variables and axithmetic-like en-

hancements (such as complex-affme infinities or
extremely wide range) that axe not the subject of
the standard. Quiet NaNs should, by means left
to the implementor's discretion, afford retrospec-
tive diagnostic information inherited from invalid
or unavailable data and results. Propagation of
the diagnostic information requires that informa-
tion contained in the NaNs be preserved through
arithmetic operations and floating-point format
conversions.

Signaling NaNs shall be reserved operands that
signal the invalid operation exception (7.1) for
every operation listed in Section 5. Whether
copying a signaling NaN without a change of for-
mat signals the invalid operation exception is the
implementor's option.

Every operation involving a signaling NaN or
invalid operation (7.1) shall, ff no trap occurs and
ff a floating-point result is to be delivered, deliver
a quiet NaN as its result.

Every operation involving one or two input
NaNs, none of them signaling, shall signal no ex-
ception but, ff a floating-point result is to be de-

13

- 2 1 -

AN$I/1EEE
Std 754-1~5

livered, shall deliver as its result a quiet NaN,
which should be one of the input NaNs. Note
that format conversions might be unable to de-
liver the same NaN. Quiet NaNs do have effects
similar to signaling NaNs on operat ions that do
not deliver a floating-point result; these opera-
tions, namely compar i son and conversion to a
format that has no NaNs, are discussed in 5.4,
5.6, 5.7, and 7.1.

6.3 T h e S ign Bi t . This s tandard does not inter-
p re t the sign of an NaN. Otherwise, the sign of a
p roduc t or quotient is the exclusive or of the op-
erands ' signs; the sign of a sum, or of a differ-
ence x - y regarded as a sum x + (- y) , differs
f rom at mos t one of the addends'~signs, and the
sign of the result of the round floating-point num-
ber to integral value operat ion is the sign of the
operand. These rules shall apply even when oper-
ands or resul ts are zero or infinite.

When the sum of two operands with opposite
signs (or the difference of two operands with
like signs) is exact ly zero, the sign of that sum
(or difference) shall be + in all rounding modes
except round toward -oo, in which mode that
sign shall be - . However , x + x = x - (- x)
retains the same sign as x even when x is zero.

Excep t that ~ - 0 shall be - 0 , every valid
square roo t shall have a positive sign.

IEEE STANDARD FOR

7.1 Inval id Opera t ion . The invalid operat ion ex-
ception is signaled if an operand is invalid for
the operation to be performed. The result, when
the exception occurs without a trap, shall be a
quiet NaN (6.2) provided the destination has a
floating-point format. The invalid operat ions are

(1) Any operation on a signaling NaN (6.2)
(2) Addition or sub t rac t ion- -magni tude sub-

traction of inflnites such as, (+ ~) + (-c¢)
(3) Mult ipl icat ion--0 ×
(4) Divis ion--0 /0 or oo/~
(5) R e m a i n d e r - - x REM y, where y is zero or

x is infinite
(6) Square roo t if the operand is less than zero
(7) Conversion of a binary floating-point num-

ber to an integer or decimal format when over-
flow, infinity, or NaN precludes a faithful repre-
sentation in that format and this cannot other-
wise be signaled

(8) Compar ison by way of predicates involving
< or > , without ?, when the operands are unor-
dered (5.7, Table 4)

7.2 Division by Zero. If the divisor is zero and
the dividend is a finite nonzero number, then the
division by zero exception shall be signaled. The
result, when no trap occurs, shall be a correctly
signed 00 (6.3).

7. E x c e p t i o n s

There are five types of exceptions that shall be
signaled when detected. The signal entails setting
a status flag, taking a trap, or possibly doing
both. With each except ion should be associated a
t rap under user control, as specified in Section 8.
The default response to an exception shall be to
proceed without a trap. This s tandard specifies
resul ts to be delivered in both trapping and non-
trapping situations. In some cases the result is
different if a t rap is enabled.

For each type of except ion the implementat ion
shall p rov ide a s tatus flag that shall be set on any
occur rence of the corresponding except ion when
no corresponding trap occurs. It shall be reset
only at the user ' s request. The user shall be able
to test and to alter the status flags individually,
and should further be able to save and restore
five at one time.

The only except ions that can coincide are in-
exact with overflow and inexact with under tow.

7.3 Overf low. The overflow exception shall be
signaled whenever the destination format ' s
largest finite number is exceeded in magnitude
by what would have been the rounded floating-
point result (Section 4) were the exponent range
unbounded. The result, when no trap occurs,
shall be determined by the rounding mode and
the sign of the intermediate result as follows:

(1) Round to nearest carries all overflows to
with the sign of the intermediate result

(2) Round toward 0 carries all overflows to the
format ' s largest finite number with the sign of
the intermediate result

(3) Round toward - ~ carr ies positive over-
flows to the format ' s largest finite number, and
carries negative overflows to - ~

(4) Round toward +0o carr ies negative over-
flows to the format ' s most negative finite num-
ber, and carries positive overflows to + ~

Trapped overflows on all operat ions except
conversions shall deliver to the trap handler the
result obtained by dividing the infinitely precise
result by 2 ~ and then rounding. The bias adjust a
is 192 in the single, 1536 in the double, and

14

- 2 2 -

BINARY FLOATING-POINT ARITHMETIC

3 × 2 "-2 in the extended format, when n is the
number of bits in the exponent field/ Trapped
overflow on conversion from a binary floating-
point format shall deliver to the trap handier a
result in that or a wider format, possibly with the
exponent bias adjusted, but rounded to the des-
tination's precision. Trapped overflow on decimal
to binary conversion shall deliver to the trap han-
dler a result in the widest supported format, pos-
sibly with the exponent bias adjusted, but
rounded to the destination's precision; when the
result lies too far outside the range for the bias
to be adjusted, a quiet NaN shall be delivered in-
stead.

7.4 Underflow. Two correlated events contribute
to underflow. One is the creation of a tiny non-
zero result between ±2 ~mia which, because it is
so tiny, may cause some other exception later
such as overflow upon division. The other is ex-
traordinary loss of accuracy during the approxi-
mation of such tiny numbers by denormalized
numbers. The implementor may choose how
these events are detected, but shall detect these
events in the same way for all operations. Tini-
ness may be detected either

(1) After round ing- -when a nonzero result
computed as though the exponent range were
unbounded would lie strictly between ±2 emm

(2) Before round ing- -when a nonzero result
computed as though both the exponent range
and the precision were unbounded would lie
strictly between ±2 Emin.

Loss of accuracy may be detected as either
(3) A denormalization //ass--when the deliv-

ered result differs from what would have been
computed were exponent range unbounded.

(4) An inexact resu/ t --when the delivered re-
sult differs from what would have been com-
puted were both exponent range and precision
unbounded (This is the condition called inexact
in 7,5).

When an underflow trap is not implemented, or
is not enabled (the default case), underflow shall
be signaled (by way of the underflow flag) only
when both tininess and loss of accuracy have
been detected. The method for detecting tininess
and loss of accuracy does not affect the deliv-
ered result which might be zero, denormalized,
or ±2 ~m~. When an underflow trap has been imple-

7The bias adjust is chosen to translate over/tmderflowed
values as nearly as possible to the middle of the exponent
range so that, if desired, they can be used in subsequent
scaled operations with less risk of causing further excep~ons.

ANSI/IEEE
S ~ 754-19~t5

mented and is enabled, underflow shall be sig-
naled when tininess is detected regaT4less of loss
of accuracy. Trapped underflows on all opera-
tions except conversion shall deliver to the trap
handler the result obtained by multiplying the
infinitely precise result by 2 ~ and then rounding.
The bias adjust a is 192 in the single, 1536 in the
double, and 3 × 2 "-2 in the extended format,
where n is the number of bi~ in the exponent
field, s Trapped underflows on conversion shall be
handled analogously to the handling of overflows
on conversion.

7.5 Inexact . If the rounded result of an opera-
tion is not exact or if it overflows without an
overflow trap, then the inexact exception shall be
signaled. The rounded or overflowed result shall
be delivered ~o the destination or, if an inexact
trap occurs, to the trap handier.

8. Traps

A user should be able to request a trap on any
of the five exceptions by specifying a handier for
it. He should be able to request that an existing
handier be disabled, saved, or restored. He should
also be able to determine whether a specific trap
handler for a designated exception has been en-
abled. When an exception whose trap is disabled
is signaled, it shall be handled in the manner
specified in Section 7. When an exception whose
trap is enabled is signaled the execution of the
program in which the exception occurred shall
be suspended, the trap handier previously spec-
ified by the user shall be activated, and a result,
if specified in Section 7, shall be delivered to it.

8.1 Trap Handler. A trap handler should have
the capabilities of a subroutine that can return a
value to be used in lieu of the exceptional opera-
tion's result; this result is undefined unless deliv-
ered by the trap handler. Similarly, the flag(s)
corresponding to the exceptions being signaled
with their associated traps enabled may be un-
defined unless set or reset by the trap handler.

SNote that a system whose underlying hardware a l w ~ s
traps on undertow, producing a rounded, bias-adjusted result,
shall indicate whether such a result is rounded up in magni-
tude in order that the correctly denormallzed r e s ~ may be
produced in system software when the user undertow trap is
disu~blecL

15

ANSI/IEEE
Std 754-1985

When a system traps, the trap handler should
be able to determine

(1) Which exception(s) occurred on this opera-
tion

(2) The kind of operation that was being per-
formed

(3) The destination's format
(4) In overflow, underilow, and inexact excep-

tions, the correctly rounded result, including in-

-23-

IEEE STANDARD FOR

formation that might not fit in the destination's
format

(5) In invalid operation and divide by zero ex-
ceptions, the operand values

8.2 Precedence. If enabled, the overflow and un-
derflow traps take precedence over a separate in-
exact trap.

16

- 2 4 -

BINARY FLOATING-POINT ARITHMETIC
ANSI/IEEE

Std 754-1985

A p p e n d i x
R e c o m m e n d e d F u n c t i o n s a n d P r e d i c a t e s

(This Appendix is not a part of ANSI/IEEE Std 754-1985, IEEE Standaxd for Binary Floating-Point ArithmeUc.)

The following functions and predicates are recommended as aids to program portability across differ-
ent systems, perhaps performing arithmetic very differently. They are described generically, that is, the
types of the operands and results are inherent in the operands. Languages that require explicit typing
will have corresponding families of functions and predicates.

Some functions, such as the copy operation y := x without change of format, may at the implemen-
tot 's option be treated as nonarithmetic operations which do not signal the invalid operation exception
for signaling NaNs; the functions in question are (1), (2), (6), and (7).

(1) Copysign(x,y) returns x with the sign of y. Hence, abs(x) = copysign(x,l.0), even it x is NaN.
(2) - x is x copied with its sign reversed, not 0 - x ; the distinction is germane when x is _+ 0 or NaN.

Consequently, it is a mistake to use the sign bit to distinguish signaling NaNs from quiet NaNs.
(3) Scalh(y,N) returns y × 2 N for integral values N without computing 2 :¢.
(4) Logb(x) returns the unbiased exponent of x, a signed integer in the format of x, except that

logb(NaN) is a NaN, logb(~) is +~, and logb(0) is - ~ and signals the division by zero exception. When
x is positive and finite the expression scalb[x,-logb(x)] lies strictly between 0 and 2; it is less than 1
only when x is denormalized.

(5) Nextafter(x,y) returns the next representable neighbor of x in the direction toward y. The follow-
ing special cases arise: ff x = y, then the result is x without any exception being signaled; otherwise, ff
either x or y is a quiet NaN, then the result is one or the other of the input NaNs. Overflow is signaled
when x is finite but nextafter(x,y) is infinite; unde r tow is signaled when nextafter(x,y) lies strictly
between ±2 emm, in both cases, inexact is signaled.

(6) Finite(x) returns the value TRUE ff - ~ < x < +0% and returns FALSE otherwise.
(7) Isnan(x), or equivalently x~x, returns the value TRUE ff x is a NaN, and returns FALSE otherwise.
(8) x<>y is TRUE only when x<y or x>y, and is distinct from x¢y, which means NOT(x=y)

(Table 4).
(9) Unordered(x,y), or x?y, returns the value TRUE ff x is unordered with y, and returns FALSE

otherwise (Table 4).
(10) Class(x) tells which of the following ten classes x falls into: signaling NaN, quiet NaN, - ~ ,

negative normalized nonzero, negative denormalized, -0 , +0, positive denormalized, positive normalized
nonzero, +~. This function is never exceptional, not even for signaling NaNs..

17

ANSI/IEEE
St~l 754..1985

- 2 5 -

Acknowledgements

Appreciation is expressed to the following companies and organizations for contributing the time,
talent, and resources of their employees to make possible the development of this standard:

Altos Computer Systems
Analytical Mechanics
Apple Computer
Argonne National Laboratory
Beckman Instruments
Bell AT&T Laboratories
Computervision
Data General Corp
Digital Equipment Corp
ELXSI
ESL Inc
Fairchild Microprocessor
Four Phase Systems
The Foxboro Company
Hewlett Packard Co
IBM Corp
Intel Corp
Itty Bitty Computers
Kylex
Lawrence Livermore Laboratory
Leibniz-Rech/Bay. Akad. Wiss.
Lockheed Research Laboratory
M & E Associates
Massachusetts Institute of Technology

Menlo Computer Associates
MMI
Motorola, Inc
National Semiconductor, Corp
Oregon Soitware
Parasitic Engineering
Prime Computer
Signetics Corp
Sperry Univac
Stanford Linear Accelerator Center
Stewart Research Ent.
The Systems Group
Tandem
University of Arizona
University of California
University of Colorado
University of Illinois
University of Maryland
University of Massachusetts
University of Ottawa
University of Toronto
Volition Systems
Zflog

18

