
12-18 March 2016
Barcelona, Spain

Sponsored by:

The 14th International Symposium on
Code Generation and Optimization

CGO 2016
Proceedings of

The Association for Computing Machinery, Inc.
2 Penn Plaza, Suite 701

New York, NY 10121-0701

Copyright c© 2016 by the Association for Computing Machinery, Inc (ACM). Permission to make digital or hard
copies of portions of this work for personal or classroom use is granted without fee provided that the copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permission to republish from: Publications Dept. ACM, Inc.
Fax +1-212-869-0481 or E-mail permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted provided that
the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923.

Notice to Past Authors of ACM-Published Articles

ACM intends to create a complete electronic archive of all articles and/or other material previously published by ACM.
If you have written a work that was previously published by ACM in any journal or conference proceedings prior to
1978, or any SIG Newsletter at any time, and you do NOT want this work to appear in the ACM Digital Library, please
inform permissions@acm.org, stating the title of the work, the author(s), and where and when published.

ACM ISBN: 978-1-4503-3778-6

Additional copies may be ordered prepaid from:

Phone: 1-800-342-6626
ACM Order Department (U.S.A. and Canada)
P.O. BOX 11405 +1-212-626-0500
Church Street Station (All other countries)
New York, NY 10286-1405 Fax: +1-212-944-1318

E-mail: acmhelp@acm.org

Cover photo "Barcelona, Sagrada Familia by night, 2015" by Euku / Licensed under CC BY-SA 3.0 / Original at
https://commons.wikimedia.org/wiki/File:Barcelona,_Sagrada_Familia_by_night,_2015.jpg

Production: Conference Publishing Consulting
D-94034 Passau, Germany, info@conference-publishing.com

Message from the General Chair

On behalf of the Organizing Committee, welcome to the 14th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO’16) held at Hotel Princesa Sofia, Barcelona,
Spain between March 12th-18th, 2016. As in previous years CGO’16 is co-located with the ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP) and the
International Symposium on High-Performance Computer Architecture (HPCA).

The International Symposium on Code Generation and Optimization continues to provide a premier
venue bringing together researchers and practitioners working at the interface of hardware and software
on a wide range of optimization and code generation techniques and related issues. The conferences
spans the spectrum from purely static to fully dynamic approaches, including techniques ranging from
pure software-based methods to architectural features and support.

CGO strives to expand and consolidate its position as the leading conference in this area. Therefore, we
have created the CGO Compiler Cluster in addition to an attractive workshops and tutorials programme.
As part of this new Compiler Cluster we have established new co-locations with two major European
compiler events: The 25th International Conference on Compiler Construction (CC 2016) and 2016
European LLVM Developers' Meeting (EuroLLVM’16). CGO shares a venue with CC 2016 and
EuroLLVM’16, which immediately follow after CGO, enabling attendees to experience a full week
packed with exciting compiler research and community gatherings.

CGO is fully committed to further strengthen its Artifact Evaluation process. Authors of accepted papers
have been invited to formally submit their supporting materials to the Artifact Evaluation process, run
by a separate committee whose task is to assess how the artifacts support the work described in the
papers. This submission has been voluntary and has not influenced the final decision regarding the
papers. We continue to highlight papers, which have successfully passed the artifact evaluation, and
have also encouraged authors to submit additional artifact documentation as supplementary material
along with the camera-ready version of their papers.

CGO is a group effort and the result of the outstanding dedication and support of its entire organizing
team. I want to express my gratitude towards the entire team of helpers, including the Steering
Committee, the Organizing Committee, the Programme Committee and its Chairs, our partners from
PPoPP, HPCA, CC and EuroLLVM, tutorial and workshop organizers, everyone at local event manager
Grupo Pacifico, and the tireless local volunteers.

We also thank all our financial sponsors for their continued generous support: ACM, IEEE, the US
National Science Foundation, Google, Microsoft Research, Oracle, Intel, IBM Research, SIGPLAN, and
SIGMICRO.

Finally, thanks to all of you as attendees and once again, welcome to CGO!

Björn Franke, University of Edinburgh

iii

Message from the Program Chairs

On behalf of the Program Committee, we are glad to present this program for the 2016 International
Symposium on Code Generation and Optimization (CGO’16). We hope you find it interesting,
informative, and innovative.

This year, we accepted 25 high quality papers from the 108 submissions that the Program Committee
(PC) reviewed (23% acceptance rate). The committee’s expertise covered a broad range of topics
including hardware, software, compiler, run-time, performance, energy, reliability, security,
optimization, analysis, debugging, etc. The composition of the PC (40 members) has been balanced
with regards to several criteria: affiliation (25 from academia, 3 from Google, 4 from IBM, 4 from
Intel, 1 each from AMD, MSR, Oracle, and STMicroelectronics), continents (24 from North America,
8 from Europe, 5 from Asia, 1 each from North Africa, Australia, and South America), and gender (34
men and 6 women).

We followed a well-established routine for the paper review process. Conflicts of interest were
handled in a way that preserved the double-blind review principle. The 140 abstracts submitted ahead
of time were used to speed up the assignment process, whose goal was to maximize the match
between the submissions and the PC expertise and interests. Each paper received a minimum of four
reviews (many received five). Whenever review confidence about a paper was not high enough,
external reviewers were carefully chosen to provide insightful feedback. A rebuttal period was
provided to allow authors to respond to the reviews, which was quite helpful in many cases.

The PC meeting was held on November 7, 2015 at MIT in Boston. The objective of the meeting was
to obtain a consensus by all the PC members on which papers were best to accept. Papers with wide
disagreements were discussed via emails intensively among reviewers and PC members before the
actual PC meeting. A few papers with clear consensus for acceptance or rejection were not discussed
during the meeting. During the PC meeting, each paper was first summarized by a pre-assigned
champion. Each reviewer then summarized the pros and cons, and discussion followed among all PC
members to come up with a consensus. Voting was used only for a few papers to make the final
decision after long discussions that could not reach a consensus. Papers submitted by PC members
were required to be of higher quality than others to get accepted. Among the 12 papers submitted by
PC members, 4 were selected.

For effectiveness and fairness, all PC members were required to attend the day-long meeting in
person. We are extremely thankful to all PC members for their traveling effort, in particular to our
international committee members who traveled from far away, e.g. Europe, Asia, or even Australia.

The entire PC is extremely happy with the quality of the papers. The CGO 2016 program covers a
range of topics from programming models to code optimization through static analysis and profiling,
performance, energy, correctness, and security. The authors of the submitted papers come from 25
countries dominated by the United State, followed by Germany, India, France, Canada, Brazil, UK,
China, etc. We hope you enjoy the papers and we look forward to your contributions to CGO in the
future!

Finally, we would like to thank the General Chair Bjoern Franke, the Artifact Evaluation Chairs
Grigori Fursin and Bruce Childers, the Web Chair Tom Spink, the Publication Chair Chris Fensch and
the Poster Chair Florian Brandner for their many hours of help.

Fabrice Rastello, Inria
Youfeng Wu, Intel Corp.

iv

CGO 2016 Organization

Organizing Committee

General Chair
Björn Franke University of Edinburgh, UK

Program Co-Chairs
Fabrice Rastello Inria, France
Youfeng Wu Intel, USA

Finance Chair
Christophe Dubach University of Edinburgh, UK

Workshop and Tutorials Chair
Jeronimo Castrillon TU Dresden, Germany

Publication Chair
Christian Fensch Heriot-Watt University, UK

Student Travel Chair
Ronald Mak San Jose State University, USA

Sponsors Chair
Tobias Edler von Koch Qualcomm Innovation Center, USA

Publicity Chair
Chris Margiolas University of Edinburgh, UK

Website Chair
Tom Spink University of Edinburgh, UK

Artifact Evaluation Chairs
Grigori Fursin dividiti, UK
Bruce Childers University of Pittsburgh, USA

Poster Chair
Florian Brandner Télécom ParisTech, France

Local Arrangements Chair
Vladimir Subotic Barcelona Supercomputing Center, Spain

v

Steering Committee

Kim Hazelwood Facebook, USA
Robert Hundt Google, USA
Scott Mahlke University of Michigan, USA
Jason Mars University of Michigan, USA
Kunle Olukotun Stanford University, USA
Vijay Janapa Reddi University of Texas at Austin, USA
Olivier Temam (Chair) Google, USA

Program Committee

Erik Altman IBM, USA
Saman Amarasinghe MIT, USA
Edson Borin University of Campinas, Brazil
Florian Brandner Télécom ParisTech, France
Mauricio Breternitz AMD, USA
Derek Bruening Google, USA
Vugranam C. Sreedhar IBM, USA
Wenguang Chen Tsinghua University, China
Mila Dalla Preda University of Verona, Italy
Evelyn Duesterwald IBM, USA
Guang Gao University of Delaware, USA
Antonio Gonzalez UPC, Spain
Christophe Guillon STmicroelectronics, France
Sebastian Hack University of Saarland, Germany
Ben Hardekopf UCSB, USA
Wei-Chung Hsu National Taiwan University, Taiwan
Robert Hundt Google, USA
Chris J. Newburn Intel, USA
Vijay Janapa Reddi University of Texas, USA
Alexandra Jimborean Uppsala, Sweden
Alain Ketterlin University Louis Pasteur, France
Jaejin Lee Seoul National University, South Korea
Mary Lou Soffa University of Virginia, USA
Scott Mahlke University of Michigan, USA
Vineeth Mekkat Intel, USA
John Mellor-Crummey Rice University, USA
Soo-mook Moon Seoul National University, South Korea
Tipp Moseley Google, USA
Dorit Nuzman Intel, Israel
Michael O'Boyle University of Edinburgh, UK
Ramesh Peri Intel, USA
Louis-Noël Pouchet Ohio State University, USA
Aaron Smith Microsoft, USA

vi

Cheng Wang Google, USA
Chenggang Wu ICT, China
Jingling Xue University of New South Wales, Australia
Qing Yi University of Colorado, USA
Antonia Zhai University of Minnesota, USA

Additional Reviewers

Aharon Abadi
Marti Anglada
Juan Luis Aragon
Jose-Maria Arnau
Rafael Auler
Riyadh Baghdadi
Ali Bakhoda
Raj Barik
Thierry
Omer Boehm
Jeffrey Bosboom
Diego Caballero
 Gaurav Chadha
Benoit Claudel
Albert Cohen
Thanh Tuan Dao
Roshan Dathathri
Francois De Ferriere
Enrique de Lucas
Tyler Denniston
Peng Di
Johannes Doerfert
Gurbinder Gill
Clemens Hammacher
Muhammad Amber
Hassaan
Jiayuan He
Anup Holey
Michael Jacobs
Davoud Jamshidi
Yves Janin

Sanath Jayasena
Sudhanshu Jha
Gangwon Jo
Jaehoon Jung
Wookeun Jung
Rashid Kaleem
Hongjune Kim
Junghyun Kim
Vladimir Kiriansky
Fredrik Berg Kjolstad
David Klaftenegger
John Kloosterman
Rakesh Kumar
Michael Kuperstein
Julien Le Guen
Seong-Won
Roland Leißa
Xiaoming Li
Yue Li
Isabella Mastroeni
Richard Membarth
Charith Mendis
Christophe Monat
Antoine Moynault
Amine Naji
Ragavendra Natarajan
Shruti Padmanabha
Sreepathi Pai
Jason Jong Kyu Park
Jungho Park
Karthik Pattabiraman

Nitzan Peleg
Marius Pirvu
Flavia Pisani
Dimitrios Prountzos
Sandro Rigo
Sigurd Schneider
Jaeho Shin
Michel Steuwer
Kevin Streit
Xin Sui
Vijay Sundaresan
Olivier Temam
Marti Torrents
Gaurang Upasani
Alejandro Valero
Cédric Vincent
Wei Wang
Haitao Wei
Dong Hyuk Woo
Byung-Sun Yang
Ding Ye
Jieming Yin
Jiecao Yu
Ayal Zaks
Babak Zamirai
Mingwei Zhang
Yunming Zhang
Hao Zhou
Stéphane Zuckerman

vii

Artifact Evaluation Committee Members

Maya Arbel Technion, Israel
Stavros Aronis Uppsala University, Sweden
Gergo Barany CEA, France
David Beckingsale LLNL, USA
Kumud Bhandari Rice University, USA
Santiago Bock University of Pittsburgh, USA
Jeffrey Bosboom MIT, USA
Trevor Brown University of Toronto, Canada
Man Cao Ohio State University, USA
Prasanth Chatharasi Rice University, USA
Bapi Chatterjee Chalmers University, Sweden
Weiwei Chen Qualcomm, USA
Natacha Crooks MPI-SWS & University of Texas in Austin, USA
Pantazis Deligiannis Imperial College, London, UK
Ankush Desai UC Berkeley, USA
Monika Dhok IIS, India
Emilio Francesquini University of Campinas, Brazil
Todd Gamblin LLNL, USA
Matthew Halpern University of Texas at Austin, USA
Rashid Kaleem University of Texas at Austin, USA
Svilen Kanev Harvard University, USA
Michael Laurenzano University of Michigan, USA
Jingwen Leng University of Texas at Austin, USA
Lingda Li Rutgers University, USA
Peter Libic Google; Charles University in Prague, Czech Republic
Lin Ma Huawei America Research Lab, USA
Na Meng University of Texas at Austin, USA
Karthik Murthy Rice University, USA
Yiannis Nikolakopulos Chalmers University, Sweden
Sreepathi Pai University of Texas at Austin, USA
HyukWoo Park Seoul National University, South Korea
Jeeva Paudel University of Alberta, Canada
Malavika Samak IIS, India
Aritra Sengupta Ohio State University, USA
KC Sivaramakrishnan University of Cambridge, UK
Steven Smith CoHo Data, Vancouver, Canada
Yulei Sui University of New South Wales, Australia
Rishi Surendran Rice University, USA
Paul Thomson Imperial College London, UK
Vasileios Trigonakis EPFL, Switzerland
Wei Wang University of Virginia, USA
Zhe Wang ICT, China
Shasha Wen College of William and Mary, USA
David Wilkinson University of Pittsburgh, USA

viii

Ennan Zhai Yale University, USA
Xiaowei Zhu Tsinghua University, China
Yuhao Zhu University of Texas at Austin, USA	

ix

CGO 2016 Sponsors and Supporters

Sponsors

Supporters

x

Beyond the Embarrassingly Parallel – New Languages,
Compilers, and Runtimes for Big-Data Processing

Madan Musuvathi
Microsoft Research

Large-scale data processing requires large-scale parallelism. Data-processing systems from traditional databases
to Hadoop and Spark rely on embarrassingly-parallel relational primitives (e.g. map, reduce, filter, and join) to
extract parallelism from input programs. But many important applications, such as machine learning and log
processing, iterate over large data sets with true loop-carried dependences across iterations. As such, these
applications are not readily parallelizable in current data-processing systems.

In this talk, I will challenge the premise that parallelism requires independent computations. In particular, I will
describe a general methodology for extracting parallelism from dependent computations. The basic idea is
replace dependences with symbolic unknowns and execute the dependent computations symbolically in parallel.
The challenge of parallelization now becomes a, hopefully mechanizable, task of performing the resulting
symbolic execution efficiently. This methodology opens up the possibility of designing new languages for data-
processing computations, compilers that automatically parallelize such computations, and runtimes that exploit
the additional parallelism. I will describe our initial successes with this approach and the research challenges that
lie ahead.

Biography

Madan Musuvathi is a Principal Researcher at Microsoft Research working in the intersection of programming
languages and systems, with specific focus on concurrency and parallelism. His interests span program analysis,
systems, model checking, verification, and theorem proving. His research has led to several tools that improve
the lives of software developers both at Microsoft and at other companies. He received his Ph.D. from Stanford
University in 2004.

xi

50 Years of Parallel Programming: Ieri, Oggi, Domani*

Keshav Pingali
University of Texas at Austin

Parallel programming started in the mid-60’s with the pioneering work of Karp and Miller, David Kuck, Jack
Dennis and others, and as a discipline, it is now 50 years old. What have we learned in the past 50 years about
parallel programming? What problems have we solved and what problems remain to be solved? What can young
researchers learn from the successes and failures of our discipline? This talk is a personal point of view about
these and other questions regarding the state of parallel programming.

* The subtitle of the talk is borrowed from the title of a screenplay by Alberto Moravia, and it is Italian for
“Yesterday, Today, Tomorrow.”

Biography

Keshav Pingali is a Professor in the Department of Computer Science at the University of Texas at Austin, and
he holds the W.A. “Tex” Moncrief Chair of Computing in the Institute for Computational Engineering and
Sciences (ICES) at UT Austin. Pingali is a Fellow of the IEEE, ACM and AAAS. He was the co-Editor-in-chief
of the ACM Transactions on Programming Languages and Systems, and currently serves on the editorial boards
of the ACM Transactions on Parallel Computing, the International Journal of Parallel Programming and
Distributed Computing. He has also served on the NSF CISE Advisory Committee (2009-2012).

xii

Knights Landing Intel Xeon Phi CPU:
Path to Parallelism with General Purpose Programming

Avinash Sodani
Intel

The demand for high performance will continue to skyrocket in the future, fueled by the drive to solve the
challenging problems in scientific world and to provide the horsepower needed to support the compute-hungry
use cases that continue to emerge in commercial and consumer space, such as machine learning and deep data
analytics. Exploiting parallelism will be crucial in achieving the huge performance gain required to solve these
problems. This talk will present the new Xeon Phi Processor, called Knights Landing, which is architected to
provide massive amounts of parallelism in a manner that is accessible with general purpose programming. The
talk will provide insights into 1) the important architecture features of the processor and 2) the software
technology to explore them. It will provide the inside story on the various architecture decisions made on
Knights Landing – why we architected the processor the way we did, and on a few programming experience –
how the general purpose programming model makes it easy to exploit parallelism on Xeon Phi. It will show
measured performance numbers from the Knights Landing silicon on a range of workloads. The talk will
conclude with showing the historical trends in architecture and what they mean for software as we extend the
trends into the future.

Biography

Avinash Sodani is a Senior Principal Engineer at Intel Corporation and the chief architect of the Xeon-Phi
Processor called Knights Landing. He specializes in the field of High Performance Computing (HPC).
Previously, he was one of the architects of the 1st generation Core processor, called Nehalem, which has served
as a foundation for today’s line of Intel Core processors. Avinash is a recognized expert in computer architecture
and has been invited to deliver several keynotes and public talks on topics related to HPC and future of
computing. Avinash holds over 20 US Patents and is known for seminal work on the concept of “Dynamic
Instruction Reuse”. He has a PhD and MS in Computer Science from University of Wisconsin-Madison and a
B.Tech (Hon’s) in Computer Science from Indian Institute of Technology, Kharagpur in India.

xiii

Poster Session

As in previous years, the 2016 International Symposium on Code Generation and Opti-
mization (CGO) hosts a combined poster session and ACM Student Research Competi-
tion (SRC). We received 32 poster abstracts, of which 15 competed in the ACM SRC.

All poster abstracts were reviewed by three members of the selection committee. Each
reviewer attributed up to 30 points to a poster and additionally provided a short comment.
The posters then were ranked according to their total score. We were finally able to accept
22 posters, of which 10 competed in the ACM SRC.

I would like to thank the general chair Björn Franke and the local organizers, most notably
Cristina Garcia, for hosting the poster session and helping with my inquiries. I would also
like to thank the program co-chairs Fabrice Rastello and Youfeng Wu for their help and
initiative during the preparations of the poster session. Special thanks go to the members
of the selection committee for reviewing all the abstracts, on time, in four days only.

Last, but not least, I would like to thank all the authors who submitted a poster ab-
stract. as well as all students who participate in the SRC. Good luck to all students
for the competition!

Florian Brandner, Télécom ParisTech

xiv

FastSim: Hybrid Analysis Based Fast Simulator with
900 MIPS Speed for CGRA Core-Profiling

Narasinga Rao Miniskar1 Rahul R Patil1 Raj Narayana Gadde1

Youngchul Rams-Cho2 Sukjin Kim2 Shi Hwa Lee2

1 Samsung R&D Institute-Bengaluru, 560036, India, {nr.miniskar, patil.rahul, raj.gadde}@samsung.com
2 DMC R&D, Samsung Electronics, Suwon-si, Korea, {rams.cho, sukj.kim, hwa.lee}@samsung.com

Coarse Grained Reconfigurable Architecture (CGRA), viz. Samsung Reconfigurable Processors, provides
great flexibility of hardware re-configurability through software solution for high-performance computing.
Application developers of CGRA require a fast and accurate core profiling tools to optimize hot-spots running
on CGRA core. Further, the certification of various standards of multimedia (DivX, Dolby, DTS, etc.) and
vision applications require fast profiling tools to evaluate functionality and performance. The state-of-the-art
VLIW, RISC and Superscalar processor simulator design approaches cannot be directly applied to CGRA
as the configuration lines of CGRA not only have the opcode and operands of instructions for each cycle
but also have hardware reconfiguration information such as routing of operands, functional unit outputs,
complex predicate logic, etc. The state-of-the-art CGRA core profiling simulators are very slow (2MIPS) as
they simulate operations, register files, MUXes, Flip-Flops and predicate network to control prologue and
epilogue. Hence, the validation of multimedia and vision standards often takes long (weeks) simulation times.
We propose a novel approach for CGRA simulation by combining configuration analysis and architecture
analysis to provide fast and cycle-accurate CGRA simulation model for CGRA profiling. Experimental
results have shown that our proposed CGRA-cycle accurate profiling simulator gives ∼900 MIPS speed.

Hot-Rodding the Browser Engine: Automatic
Configuration of JavaScript Compilers

Chris Fawcett1 Lars Kotthoff1 Holger H. Hoos1

1 University of British Columbia, Department of Computer Science, {fawcettc, larsko, hoos}@cs.ubc.ca

Software systems in many application areas offer to the user a multitude of parameters, switches and other
customisation hooks. Humans tend to have difficulties determining the best configurations of these param-
eters for particular applications. Modern optimising compilers are an example of such software systems;
they have hundreds of configurable parameters which need to be tuned for optimal performance, but which
interact in unpredictable ways and are often left at their default values.
In this work, we automatically determine compiler parameter settings that result in optimised performance
for particular applications. Specifically, we apply a state-of-the-art automated parameter configuration pro-
cedure based on sequential, model-based, gradient-free optimisation techniques to two prominent JavaScript
compilers and demonstrate that runtime performance improvements, more than 35% in some cases, can be
achieved over the default parameter settings on a diverse set of benchmarks. We investigate the performance
of this approach applied to entire benchmark suites, as well as to individual benchmarks, showing that it is
possible to obtain significant performance gains as the considered tasks get more specific. We also present
an analysis of which compiler optimisation parameters (or parameter categories) are most responsible for
the increased performance in each of our considered cases.

xv

A-MapCG: An Adaptive MapReduce Framework for
GPUs

Lifeng Liu1 Meilin Liu1 Jun Wang2

Chongjun Wang3

1 Wright State University, {liu.85, meilin.liu} @wright.edu
2 University of Central Florida, Jun.Wang@UCF.edu

3 Nanjing University, chjwang@nju.edu.cn

The MapReduce framework is proposed by Google to process large data sets, which is an efficient frame-
work used in many areas, such as social network, scientific research, electronic business, etc. Hence, many
MapReduce frameworks implemented on different platforms are proposed and developed, including Phoenix
(based on multicore CPUs), MapCG (based on GPUs), and StreamMR (based on GPUs). However, these
MapReduce frameworks have limitations, and they cannot handle the collision problem in the map phase,
and the unbalanced workload problem in the reduce phase.To improve the performance of the MapReduce
framework on GPGPUs, an Adaptive MapReduce Framework for GPUs (A-MapCG) is proposed and de-
veloped based on the MapCG framework, to reduce the number of collisions while inserting key-value pairs
in the map phase with the proposed segmentation table, and to handle the unbalanced workload problems
using dynamic parallelism in the reduce phase. The proposed A-MapCG framework is evaluated on the Tesla
K40 GPU hosted by Intel Core i7-4790 with four benchmarks: Inverse Index (II), Word Count (WC), Page
Rank (PR), and Monte Carlo (MC). The experimental results show that our proposed A-MapCG improves
the performance by 15x on average compared with MapCG.

From R to Heterogeneous Accelerators: the MACH
project

Vincent Ducrot1 Thierry Goubier2 Kevin Juilly1

Benoit Da Mota1,3 Gaetan Bayle Des Courchamps1 Sébastien Monot1

1 AS+, Eolen Group, {vincent.ducrot, kevin.juilly, g.bayledescourchamps, sebastien.monot}@eolen.com
2 CEA List, Thierry.Goubier@cea.fr

3 LERIA, University of Angers, France, benoit.damota@univ-angers.fr

The MACH project aims at making high level, domain oriented programming on heterogeneous accelerators
simple through domain specific languages (DSLs) and domain specific embedded languages (DSeLs). One of
the explored DSL is the R programming language, and our approach, as a subteam within the MACH project,
is to combine the StarPU heterogeneous dataflow runtime, the LLVM compiler infrastructure, a dedicated R
front-end and dedicated parallelizer and specializer passes implemented within the LLVM framework. In this
poster, we will present the different points of focus of our project; type analysis and dataflow task extraction
from R code in the front-end, task parallelization and hardware target independence in the specializer passes,
and the articulation between those two main blocks.

xvi

KGEN: a divide-and-conquer approach for Fortran
application modernization

Youngsung Kim1 John Dennis1 Christopher Kerr2

Raghu Raj Prasanna Kumar1 Amogh Simha3 Allison Baker1

Sheri Mickelson1

1 National Center for Atmospheric Research, Boulder, Colorado, U.S.A., {youngsun, dennis, raghuraj,
abaker, mickelso}@ucar.edu
2 chris.kerr.llc@gmail.com

3 University of Colorado, Boulder, Colorado, U.S.A., amogh.simha@colorado.edu

Computational kernels, small piece of software that selectively captures the characteristics of larger appli-
cations, have been used successfully for decades. Kernels allow for the testing of a compiler’s ability to
optimize code, performance of future hardware and reproducing compiler bugs. Unfortunately they can be
rather time consuming to create and do not always accurately represent the full complexity of large scientific
applications. Furthermore, expert knowledge is often required to create such kernels. In this paper, we
present a Python-based tool that greatly simplifies the generation of computational kernels from Fortran
based applications. Our tool automatically extracts partial source code of a larger Fortran application into a
stand-alone executable kernel. Additionally, our tool also generates state data necessary for proper execution
and verification of the extracted kernel. We have utilized our tool to extract more than thirty computational
kernels from a million-line climate simulation model. Our extracted kernels have been used for a variety of
purposes including: code modernization, identification of limitations in compiler optimizations, numerical
algorithm debugging, compiler bug reporting, and for procurement benchmarking.

Atomicity Violation Checker for Task Parallel Programs
Adarsh Yoga1 Santosh Nagarakatte1

1 Rutgers University, USA, {adarsh.yoga, santosh.nagarakatte}@cs.rutgers.edu

Task based programming models (e.g., Cilk,TBB) simplify multicore programming in contrast to program-
ming with threads. In a task based model, the programmer specifies parallel tasks and the runtime maps these
tasks to hardware threads. The runtime automatically balances the load using work-stealing and provides
performance portability. However, interference between parallel tasks can result in concurrency errors.
This paper proposes a dynamic analysis technique to detect atomicity violations in task parallel programs,
which could occur in different schedules for a given input without performing interleaving exploration. Our
technique leverages the series-parallel dynamic execution structure of a task parallel program to identify
parallel accesses. It also maintains access history metadata with each shared memory location to identify
parallel accesses that can cause atomicity violations in different schedules. To streamline metadata man-
agement, the access history metadata is split into global metadata that is shared by all tasks and local
metadata that is specific to each task. The global metadata tracks a fixed number of access histories for
each shared memory location. Our prototype tool for Intel Threading Building Blocks detects atomicity
violations that can potentially occur in different interleavings for a given input with performance overheads
similar to Velodrome atomicity checker.

xvii

Hybrid-JIT : Hardware Accelerated JIT Compilation for
Embedded VLIW Processors

Simon Rokicki1 Erven Rohou2 Steven Derrien1

1 Université de Rennes 1/IRISA, {simon.rokicki, steven.derrien}@irisa.fr
2 INRIA/IRISA, erven.rohou@inria.fr

Just-in-time (JIT) compilation is widely used in current embedded systems (mainly because of Java Virtual
Machine). When targeting Very Long Instruction Word (VLIW) processors, JIT compilation back-ends grow
more complex because of the instruction scheduling and register allocation phases. This tends to reduce the
benefits of JIT compilation for such systems.
In the context of heterogeneous many-core systems based on VLIW processors, each VLIW core has a different
configuration and are not binary compatible. In such a system, JIT compilation can be used to migrate tasks
from one core to another. The cost of JIT compilation becomes a major constraint of the system.
In this document, we present the Hybrid-JIT platform, a hardware software co-design where JIT management
is handled in software and the back-end is performed by specialized hardware. The hardware accelerator
is called by the processor as any other instruction, and perform instruction scheduling following the list
scheduling algorithm. This hardware accelerator also performs register allocation. Experimental studies
show that this approach leads to a compilation up to 15 times faster and 18 times more energy efficient than
a pure software compilation.

PACXX: Programming Model and Code Generation for
Accelerators using C++14

Michael Haidl1 Sergei Gorlatch1

1 University of Muenster, {m.haidl, gorlatch}@uni-muenster.de

We present PACXX – a unified programming model for programming many-core systems that comprise
accelerators like Graphics Processing Units (GPUs). In PACXX, programs are written using exclusively
the newest C++14 standard, with all modern features including type inference (auto), variadic templates,
generic lambda expressions, as well as STL containers and algorithms. Code for accelerators is generated
directly from C++14 code and optimized during program execution to achieve high performance. We aim
at overcoming the current use of two distinct programming models: the host code for the CPU is written in
C/C++ with the restricted, C-like API for memory management, while the device code for the GPU has to
be written using a device-dependent, explicitly parallel programming model, e.g., OpenCL or CUDA, which
leads to long, poorly structured and error-prone codes. We implement PACXX by a custom compiler (based
on the Clang front-end and LLVM IR) and a runtime system that together perform major tasks of memory
management and data synchronization automatically and transparently for the programmer. We show that
PACXX codes are about 60% shorter than their OpenCL and CUDA equivalents and outperform them by
up to 10%.

xviii

Significance Based Computing for Reliability and
Power Optimization

Nikolaos Bellas1 Christos D.Antonopoulos1 Spyros Lalis1

Konstantinos Parasyris1 Vassilis Vassiliadis1 Uwe Naumann2

Jan Riehme2 Jens Deussen2 Dimitrios S. Nikolopoulos3

Georgios Karakonstantis3 Hans Vandierendonck3 Charalampos Chalios3

1 CERTH & University of Thessaly, Greece, {nbellas, cda, lalis,koparasy, vasiliad}@uth.gr
2 RWTH Aachen University, Germany, {naumann, riehme, deussen}@stce.rwth-aachen.de

3 Queen’s University Belfast, United Kingdom, {d.nikolopoulos, g.karakonstantis,h.vandierendonck,
cchalios01}@qub.ac.uk

Manufacturing process variability at low geometries and energy dissipation are the biggest challenges in the
design of future computing systems. Currently, manufacturers go to great lengths to guarantee fault-free
operation of their products by introducing redundancy in voltage margins, conservative layout rules, and
extra protection circuitry.
However, such design redundancy leading to significant energy overheads may not be really required, since
many modern workloads, such as multimedia, machine learning, visualization, etc. can tolerate a degree of
imprecision in computations and data.
SCoRPiO seeks to exploit this observation and to relax reliability requirements for the hardware layer
by allowing a controlled degree of unreliability to be introduced to computations and data. Focus is on
researching methods that allow the system- and application-software layers to synergistically characterize
the significance of various parts of the program for output quality, and their tolerance to faults. In turn,
this will enable the system to aggressively reduce its power footprint by opportunistically powering hardware
modules below nominal values.
Reliability issues in SCoRPiO are not seen as a problem but rather as an opportunity to rethink the concept
of computation in a novel and vertical way that will allow semiconductor industry to progress to smaller
technology geometries.

Inference of Peak Density of Indirect Branches to
Detect ROP Attacks

Mateus Tymburiba1 Rubens E. A. Moreira1 Fernando Magno Quintao Pereira1

1 Department of Computer Science, UFMG, Brazil, {mateustymbu,rubens,fernando}@dcc.ufmg.br

A program subject to a Return-Oriented Programming (ROP) attack usually presents an execution trace
with a high frequency of indirect branches. From this observation, several researchers have proposed to
monitor the density of these instructions to detect ROP attacks. These techniques use universal thresholds:
the density of indirect branches that characterizes an attack is the same for every application. This paper
shows that universal thresholds are easy to circumvent. As an alternative, we introduce an inter-procedural
semi-context-sensitive static code analysis that estimates the maximum density of indirect branches possible
for a program. This analysis determines detection thresholds for each application; thus, making it more
difficult for attackers to compromise programs via ROP. We have used an implementation of our technique
in LLVM to find specific thresholds for the programs in SPEC CPU2006. By comparing these thresholds
against actual execution traces of corresponding programs, we demonstrate the accuracy of our approach.
Furthermore, our algorithm is practical: it finds an approximate solution to a theoretically undecidable
problem, and handles programs with up to 700 thousand assembly instructions in 25 minutes.

xix

Symbolic Range Analysis of Pointers
Vitor Paisante1 Maroua Maalej2 Leonardo Barbosa1

Laure Gonnord3 Fernando Magno Quintao Pereira1

1 Department of Computer Science UFMG, Brazil, {paisante, leob, fernando}@dcc.ufmg.br
2 University of Lyon, LIP, Lyon, France Maroua.Maalej@ens-lyon.fr

3 Univ. Lyon 1, LIP, Lyon, France, Laure.Gonnord@ens-lyon.fr

Alias analysis is one of the most fundamental techniques that compilers use to optimize languages with point-
ers. However, in spite of all the attention that this topic has received, the current state-of-the-art approaches
inside compilers still face challenges regarding precision and speed. In particular, pointer arithmetic, a key
feature in C and C++, is yet to be handled satisfactorily. This paper presents a new alias analysis algorithm
to solve this problem. The key insight of our approach is to combine alias analysis with symbolic range
analysis. This combination lets us disambiguate fields within arrays and structs, effectively achieving more
precision than traditional algorithms. To validate our technique, we have implemented it on top of the LLVM
compiler. Tests on a vast suite of benchmarks show that we can disambiguate several kinds of C idioms that
current state-of-the-art analyses cannot deal with. In particular, we can disambiguate 1.35x more queries
than the alias analysis currently available in LLVM. Furthermore, our analysis is very fast: we can go over
one million assembly instructions in 10 seconds.

Android Performance Optimization from Intelligence of
Dynamic Compiler Filters

Bhuwan Bhaskar Mishra1 Anuradha Kanukotla1 Atikant Singh1

1 System Software and SoC, Samsung Research and Development, Institute Bangalore, India,
{bhuwan.m, k.anuradha and Atikant.s}@samsung.com

The runtime environment of Android Lollipop is based on an Ahead of Time (AOT) compiler, which trans-
lates the bytecode of an application to native machine code during installation. Despite the performance
improvements due to AOT, installation time increases and applications requires extra memory to store its
native code. Google defines six compiler configurations such as everything, speed, balanced, space, interpret-
only and verify-none which determine how to pre-optimize/compile an application, thereby prioritizing dif-
ferent aspects such as installation time, runtime performance and storage space. In this research paper, we
propose to use a combination of different compiler filters to reduce installation time and memory usage (both
RAM and ROM). We experimented with ten different combinations of filters provided by Android and found
out that combination of speed and interpret-only filter performs better than other combinations. As per the
result of our research, we found that RAM and ROM usage is reduced by more than 20% and installation
time is reduced by 50% in comparison to the default filter.

xx

Translating Embedded VM Code in x86 Binary
Executables

Haijiang Xie1 Juanru Li1 Yuanyuan Zhang1

1 Shanghai Jiao Tong University, hjxie04@gmail.com, {jarod, yyjess}@sjtu.edu.cn

Code protection schemes nowadays adopt language embedding, a technique in which a customized language is
built to obfuscate original code through transforming it into a customized form with which the analyst is not
familiar. The transformed code is then interpreted by a so-called Embedded VM. This type of transformation
does increase the cost of code comprehending and maintaining, and introduces extra runtime overhead.
In this paper, we conduct an in-depth study on embedded VM based code protection and propose a deobfus-
cation approach that aims to recover the original code form. Our approach first pinpoints the interpretation
procedure and partitions handlers of the embedded VM, and then employs a VM-state based handler trans-
lating, which represents the behaviors of handlers in terms of VM-state operations. Finally, the translated
operations of each handler is optimized and transformed into host code. After this process we can obtain a
clear and runtime efficient code representation.
We build Nightingale, a binary translation tool, to fulfil this de-obfuscation automatically with x86 binary
executables. We test our approach with three latest commercial code obfuscators and a set of home brewed
obfuscation schemes. The results demonstrate that this kind of obfuscated code can be simplified with host
language effectively.

Resource Sharing for GPUs
Vishwesh Jatala1 Jayvant Anantpur2 Amey Karkare1

1 Department of CSE, IIT Kanpur, {vjatala, karkare}@cse.iitk.ac.in
2 SERC, IISc, Bangalore, jayvant@hpc.serc.iisc.ernet.in

Graphics Processing Units (GPUs) achieve high throughput by utilizing thread level parallelism (TLP). The
amount of TLP present in a GPU depends on the number of resident threads in its streaming multiprocessors
(SM). The number of threads and thread blocks that can be launched in an SM for a kernel depends on the
kernel’s requirement of resources, such as registers and scratchpad memory. Since the resources of an SM
are allocated at thread block level granularity, some resources remain under utilized.
In this poster, we present a resource sharing approach that improves the resource utilization by launching ad-
ditional thread blocks. These additional thread blocks share some of their resources with other existing thread
blocks in the SM. Further, we propose three optimizations to effectively use the additional thread blocks.
We show the effectiveness of our approach by implementing it for two resources: Registers and Scratchpad
Memory. We validated our approach experimentally on several kernels from CUDA-SDK, GPGPU-Sim,
Rodinia, and Parboil benchmarks. We observed that kernels that under utilize registers show an average
improvement of 11% with register sharing, whereas, kernels that under utilize scratchpad memory show an
average improvement of 12.5% with scratchpad sharing.

xxi

Autotuning Multi-Tiered Applications for Performance
Vimuth Fernando1 Sanath Jayasena1

1 University of Moratuwa, {vimuth.10, sanath@cse.mrt.ac.lk}@cse.mrt.ac.lk

With the current popularity of cluster based web applications, getting the maximum possible performance
from applications deployed in multi-tiered environments becomes an important task. But the large numbers
of configurable parameters in today’s server applications make manually tuning them for better performance
a difficult task. In this work, we explore the autotuning approach, which is generally used to tune the perfor-
mance of programs in traditional HPC settings, to tune multi-tiered web applications. Our approach is based
on OpenTuner, a framework that can be used to build auto-tuners to search through a configuration space for
an optimal configuration. However, the wide variations and the dynamic nature in the runtime environment,
such as network congestion, variations in demand, possible node failures and changes in workloads pose a
significant challenge for this approach.
In this work, we explore offline tuning techniques to overcome the challenges of autotuning multi-tiered appli-
cations. We present preliminary results of offline autotuning experiments that tuned benchmark applications
for multiple performance goals. We show that 20% to 25% improvements in response time and throughput
can be achieved through our offline autotuning approach. We also show that different performance goals can
lead to differences in configurations and discuss the shortcomings of offline autotuning methods.

Unison: Constraint-Based Register Allocation and
Instruction Scheduling

Roberto Castañeda Lozano1,2 Gabriel Hjort Blindell2 Christian Schulte1,2

Mats Carlsson1

1 SICS, Sweden, {rcas, matsc}@sics.se
2 KTH, Sweden, {ghb, cschulte}@kth.se

Unison is a flexible, potentially optimal approach to integrated register allocation and instruction scheduling.
Using modern combinatorial optimization allows Unison to handle, for the first time, all subproblems of
global register allocation in integration with instruction scheduling while scaling to functions with hundreds
of instructions. Unison can be used as an alternative or a complement to traditional approaches, which by
solving each of the problems in isolation with heuristic algorithms trade off flexibility and code quality for
compilation speed.
Our approach is based on a program representation (Unison IR) and an integrated combinatorial model that
expresses the potential decisions taken by register allocation and instruction scheduling and the constraints
imposed by the processor and the semantics of a low-level function representation. The combinatorial model
is solved with constraint programming, an optimization technique that is particularly effective for allocation
and scheduling problems.
Experiments with MediaBench for Hexagon (a multimedia DSP) show that Unison is both practical (it
scales to medium- size functions) and effective (it yields 7% faster code than LLVM’s heuristic algorithms
on average). The approach is most suitable where higher compilation times can be tolerated or heuristic
algorithms just cannot deal with the complexity of the targeted processors.
Acknowledgments
This research is partially funded by LM Ericsson AB and the Swedish Research Council (VR 621-2011-6229).
The authors are grateful for helpful comments from the reviewers.

xxii

A Predictive Modeling Framework For Compiler
Phase-ordering Problem

Amir Hossein Ashouri1 Andrea Bignoli1 Gianluca Palermo1

Cristina Silvano1

1 Politecnico Di Milano, ITALY, {name.family-name}@polimi.it

Today’s compilers offer a huge number of transformation optimizations to choose among and this choice can
significantly impact on the performance of the code being optimized. Not only the selection of compiler
optimizations represent a hard problem to be solved [2, 3], but also finding the best ordering can add fur-
ther complexity, making it a long standing problem in the compilation research [1, 5]. Classic predictive
modelings simply can not cope with the enormous complexity of the optimizations within a sequence. This
paper proposes a novel autotuning framework i) to dynamically explore and characterize the applications
and ii) to predict the best compiler optimizations to be applied in order to maximize the performance.
The framework also presents a mapping technique capable of transforming any representation of compiler
optimizations vector in the phase-ordering space including those having repetitions into a new binary repre-
sentation that is classified under the problem of selection of compiler optimization. This way the compiler
researchers can benefit from exploiting fix-feature vectors for the predictive modelings. Experimental results
using the latest LLVM compiler framework and cBench [4] suite have shown effectiveness of the mapping
technique by utilizing a number of predictive modelings. We show statistical analysis over the distribution
of the data and the quality comparison with respect to Random Iterative Compilation model and standard
optimization levels -O2 and -O3.
Acknowledgments
This work is partially funded by the European Union’s Horizon 2020 research and innovation programme
under grant agreement ANTAREX-671623.

Numerically Accurate Code Generation
Nasrine Damouche1 Matthieu Martel1 Alexandre Chapoutot2

1 University of Perpignan, LAboratory of Mathematics and PhysicS, 52 Avenue Paul Alduy, 66860
PERPIGNAN Cedex 9, {nasrine.damouche, matthieu.martel}@univ-perp.fr

2 U2IS, ENSTA ParisTech, Paris-Saclay University, 828 bd des Maréchaux, 91762 Palaiseau cedex,
France, alexandre.chapoutot@ensta-paristech.fr

Floating-point computations are widely used in various areas including embedded and critical systems. How-
ever, the results of these computations are necessarily perturbed by small or large round-off errors. In critical
scenarii, these errors may be accumulated and may generate serious damages to humans, industry, finance, et
cetera. To deal with this matter, we correct these errors by transforming automatically programs in a source
to source manner. Our transformation relies on a static analysis by abstract interpretation which provides
variables ranges used to guide our tool. Currently, we transform not only arithmetic expressions, but also
pieces of code with assignments, conditionals and loops and ongoing work is carried out to handle functions
and arrays. We have shown that we significantly improve the numerical accuracy of computations by rewrit-
ing programs while trying to find the best candidate code in terms of accuracy and minimization of the error
relatively to the exact model. We have also succeeded to reduce by about 20% the number of iterations
needed for the convergence of numerical iterative methods for matrix inversion, orthogonalization or eigen-
values computations by improving their accuracy. In addition, we have proven that the generated programs
do not necessarily have the same semantics as the original program but are mathematically equivalent.

xxiii

Generalized Tiling for Loops and Dataflow Programs
Duco van Amstel1

1 Kalray SA / Inria, duco.van-amstel@{kalray.eu,inria.fr}

Loop tiling is a much studied code optimization. A limit to classical tiling is the fact that non-nested loops
can not be tiled. Our approach generalizes tiling by considering the instructions of a single iterations as an
extra dimension that can be tiled. A consequence is that data reuses can no longer be expressed in the same
way for each point of the tiled domain. We transform the graph of data reuses into a canonical form on which
we can compute the best possible tile sizes in order to optimize data reuse for a given target memory size.
These computations involve a new model for both the memory footprint and the memory communications
induced by a given code. The computed parameters can then used to transform the loops through loop
fission, unrolling and instruction rescheduling. On a broader scope the canonical form that is used for the
data reuse graph has very strong similarities with the graph of actors of a dataflow language as actors can
be assimilated with the instructions of a loop. As such our generalized tiling approach can also be used for
both scheduling and ressource allocation in a distributed dataflow runtime.

MAFE: An Environment for MATLAB-to-C Compilation
Supporting Static and Dynamic Memory Allocation and

Multi-Level User Interactive Code Optimization
Christakis Lezos1 Grigoris Dimitroulakos1 Ioannis Latifis1

Konstantinos Masselos1

1 University of Peloponnese, Department of Informatics and Telecommunications, Terma Karaiskaki,
22100 Tripoli, Greece, {lezos,dhmhgre,latifis,kmas}@uop.gr

MATLAB compilation to lower/implementation level languages is performed for application development
(e.g. embedded C generation, high-level synthesis to VHDL) and for performance optimization. In this work
MAFE, an environment for MATLAB-to-C compilation is proposed. The C code generated by MAFE allo-
cates memory for arrays both statically and dynamically. MAFE’s approach for dynamic memory allocation
preallocates arrays and a maximum and an imaginary size are assigned to them. The imaginary size changes
when a new value is assigned to the array. This way the array size can change dynamically without any
reallocation cost. Furthermore, MAFE can optionally generate exception functions that implement runtime
checks on the arrays’ sizes which is an advantage over Mathworks’ MATLAB Coder that infers all array
sizes at compile time and does not generate code for execution time size checks. MAFE environment also
includes a source code optimizer applying loop and data reuse exploitation transformations. The optimizer
supports developers in efficiently applying transformations interactively both at low level (C code) and at
high level (MATLAB code). Experimental results prove that the optimizer can: 1) improve execution time
of a MATLAB algorithm up to 30% for the C code generated by MAFE and up to 22% for the C code
generated by MATLAB Coder, and 2) reduce cache misses up to 31% for the C code generated by MAFE
and up to 40% for the C code generated by MATLAB Coder.

xxiv

Iterative compilation on mobile devices
Paschalis Mpeis1 Pavlos Petoumenos1 Hugh Leather1

1 University of Edinburgh, p.mpeis@ed.ac.uk, {ppetoume, hleather}@inf.ed.ac.uk

The abundance of poorly optimized mobile applications signifies tremendous underutilization of the already
limited computing sources of mobile devices.
Iterative compilation can reclaim such waste, however, neither of the existing approaches fit the peculiar
mobile context. Offline search is tailored for fixed applications, input, and architectures. Online self-adapting
approaches overcome such limitations, however, they degrade a user’s experience, as they inevitably evaluate
poorly performing transformations during their early-learning stages. Moreover, evaluation is complicated
by online execution noise.
We propose a fusion of iterative compilation with a capture and-replay mechanism to overcome these prob-
lems. Transparent online operations capture users’ input to time-consuming functions of applications. The
input is a minimal set of pages, accessed during the execution of such functions. It is identified by protecting
relevant memory areas and subsequently handling deliberate segmentation violations. A fork that precedes
memory protection, leverages the efficient copy-on-write mechanism to duplicate the input to an idle child
process. On application’s termination the child stores such pages on disk. Then, at idle-and-charging pe-
riods, different transformations are evaluated through replaying. Custom link strategies ensure that replay
succeeds in spite of code alternations.
We have tested our approach on embedded devices’ benchmarks, where we achieved at least 20% speedup
against -O3 of Clang, after randomly visiting a tiny fraction of the space.

Approximation at the Level of Functions
Aurangzeb1 Rudolf Eigenmann1

1 Purdue University, {orangzeb, eigenman}@purdue.edu

Approximate computing has emerged as an active area of research in recent years. A number of techniques
have been proposed to increase performance of applications that can tolerate a certain degree of inaccuracy.
Approximating functions can offer significant performance improvement but this opportunity has not yet been
fully explored by the approximate computing community. We introduce techniques to perform approximation
at the level of functions. We present our schemes with two flavors and discuss four realizations. We show that
mathematical and scientific functions can be approximated and used in applications amenable to approximate
computing by presenting results on 90 such functions from the GNU Scientific Library (GSL). Results show
that our approximation scheme was able to speed up 92% of all functions. For 71% of the functions, the
normalized RMS error in the approximated result was very small (0.06 on average) with 9.3x speedup,
on average. Whereas for another 15% of functions it was 0.49 with an average speedup of 9.5x. We also
demonstrate the feasibility and practicality of the approach by presenting results on three real applications.
The average speedup for these applications is 1.74x with 0.5% error, on average.

xxv

Contents
Frontmatter
Messages from the Chairs . iii
Organization . v
Sponsors and Supporters . x
Keynote Abstracts . xi
Poster Abstracts . xiv

Profiling Feedback

Cheetah: Detecting False Sharing Efficiently and Effectively
Tongping Liu and Xu Liu — University of Texas at San Antonio, USA; College of William and Mary, USA 1

AutoFDO: Automatic Feedback-Directed Optimization for Warehouse-Scale Applications
Dehao Chen, David Xinliang Li, and Tipp Moseley — Google, USA . 12

Portable Performance on Asymmetric Multicore Processors
Ivan Jibaja, Ting Cao, Stephen M. Blackburn, and Kathryn S. McKinley — University of Texas at Austin, USA; Institute of
Computing Technology at Chinese Academy of Sciences, Australia; Australian National University, Australia; Microsoft
Research, USA . 24

Data Layout and Vectorization

StructSlim: A Lightweight Profiler to Guide Structure Splitting
Probir Roy and Xu Liu — College of William and Mary, USA . 36

Exploiting Recent SIMD Architectural Advances for Irregular Applications
Linchuan Chen, Peng Jiang, and Gagan Agrawal — Ohio State University, USA 47

Exploiting Mixed SIMD Parallelism by Reducing Data Reorganization Overhead
Hao Zhou and Jingling Xue — UNSW, Australia . 59

GPU
A Black-Box Approach to Energy-Aware Scheduling on Integrated CPU-GPU Systems

Rajkishore Barik, Naila Farooqui, Brian T. Lewis, Chunling Hu, and Tatiana Shpeisman — Intel Labs, USA; Georgia
Institute of Technology, USA . 70

Portable and Transparent Software Managed Scheduling on Accelerators for Fair Resource Sharing
Christos Margiolas and Michael F. P. O’Boyle — University of Edinburgh, UK . 82

Communication-Aware Mapping of Stream Graphs for Multi-GPU Platforms
Dong Nguyen and Jongeun Lee — Ulsan National Institute of Science and Technology, South Korea 94

gpucc: An Open-Source GPGPU Compiler
Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary, Jacques Pienaar, Bjarke Roune, Rob Springer,
Xuetian Weng, and Robert Hundt — Google, USA . 105

Affine Programs

A Basic Linear Algebra Compiler for Structured Matrices
Daniele G. Spampinato and Markus Püschel — ETH Zurich, Switzerland . 117

Opening Polyhedral Compiler’s Black Box
Lénaïc Bagnères, Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul — INRIA, France; University of Strasbourg,
France . 128

Trace-Based Affine Reconstruction of Codes
Gabriel Rodríguez, José M. Andión, Mahmut T. Kandemir, and Juan Touriño — Universidade da Coruña, Spain;
Pennsylvania State University, USA . 139

xxvi

Static Analysis

Inference of Peak Density of Indirect Branches to Detect ROP Attacks
Mateus Tymburibá, Rubens E. A. Moreira, and Fernando Magno Quintão Pereira — Federal University of Minas Gerais,
Brazil . 150

Sparse Flow-Sensitive Pointer Analysis for Multithreaded Programs
Yulei Sui, Peng Di, and Jingling Xue — UNSW, Australia . 160

Symbolic Range Analysis of Pointers
Vitor Paisante, Maroua Maalej, Leonardo Barbosa, Laure Gonnord, and Fernando Magno Quintão Pereira — Federal
University of Minas Gerais, Brazil; University of Lyon, France . 171

Programming Models

Towards Automatic Significance Analysis for Approximate Computing
Vassilis Vassiliadis, Jan Riehme, Jens Deussen, Konstantinos Parasyris, Christos D. Antonopoulos, Nikolaos Bellas,
Spyros Lalis, and Uwe Naumann — CERTH, Greece; RWTH Aachen University, Germany 182

Have Abstraction and Eat Performance, Too: Optimized Heterogeneous Computing with Parallel Pat-
terns
Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Arvind K. Sujeeth, Christopher De Sa, Christopher Aberger, and Kunle
Olukotun — Stanford University, USA; Purdue University, USA . 194

NRG-Loops: Adjusting Power from within Applications
Melanie Kambadur and Martha A. Kim — Columbia University, USA . 206

Correctness
Validating Optimizations of Concurrent C/C++ Programs

Soham Chakraborty and Viktor Vafeiadis — MPI-SWS, Germany . 216
IPAS: Intelligent Protection against Silent Output Corruption in Scientific Applications

Ignacio Laguna, Martin Schulz, David F. Richards, Jon Calhoun, and Luke Olson — Lawrence Livermore National
Laboratory, USA; University of Illinois at Urbana-Champaign, USA . 227

Atomicity Violation Checker for Task Parallel Programs
Adarsh Yoga and Santosh Nagarakatte — Rutgers University, USA . 239

Binary/Virtualization

Flexible On-Stack Replacement in LLVM
Daniele Cono D’Elia and Camil Demetrescu — Sapienza University of Rome, Italy 250

BlackBox: Lightweight Security Monitoring for COTS Binaries
Byron Hawkins, Brian Demsky, and Michael B. Taylor — University of California at Irvine, USA; University of California
at San Diego, USA . 261

Re-constructing High-Level Information for Language-Specific Binary Re-optimization
Toshihiko Koju, Reid Copeland, Motohiro Kawahito, and Moriyoshi Ohara — IBM Research, Japan; IBM, Canada . 273

Author Index . 284

xxvii

