Rmcmmm | ALGOL~Bulletin no. 7.
Gl. Carlsbergvej 2, 3. Novamber 1959, -
Copenha gen, Valby.

- T.1. EXPONENTIATION PARENTHESES,.
D:Lscussion. Ref. AB 2.2.1, 2.1.2.1, 3.9, 5.2.1.

B[‘te from Matematikmeskimm#mdens Arbetagmpp, Stockholm.
,"Ue ag.r:ee with the proposal AB 5.2.1."

7.2. THE OPERATOR =,
Diacwsiono Refe AB .30101. 4.2.1' 5.2.2.

Yote from Matematilmaskinnimdens Arbetsgrupp, Stockholm: - 26.10.1959
’ "Ve agrae with the proposal AB 5.2.2." T
Vote from Fac:.t, Stockholm: _ 28.10.1959
:‘Ue agree . e

. T.3. THE EFFECT, FORM, ARD SYMBOL FOR AUXTLIARY mFQRPIATION

-ﬁ_DJ.scuasim. Ref. AB 5.8.)
7.3.1. Vote from Matematilmaskinniimndens Arbeisgrupp, otockholm. 26.10.1959
e’ agree accept the proposals AB 5.8.1, 5.8.2, and 5.8.3." TR

Ts3.2. Vote from Pacit, Stockholm: 28.10.1959

"We agree.” SRR

7+3.3. Proposal from K. Samelson, Hainz:

"The following standards should be set up

a) It should be unmistakably characterized snd resdable.

b) It should be kept separate from AILGOL programs as far as possib]e.

¢) At least amongst hardware—groups, it should be standardized as far as
possible. Underlying machine characteristics usually are not unique.

See also the remarks by the Paris sub-committee, AB 7.28.4.
7:3.4. Yote from the ALGOL-group at Svenska Aeroplan AB:
"¥e agres®.
7.4. ARRAY DECLARATIONS IN PROCEDURE HEADINGS.
: . Discussion. Ref. AB 5.12.

"7.4 1. Comment from H. Rutishauser: 21.10.1959.

*In'an array-declaration components of an array certamly may. occur: ARRAY
(x[l l'n,y[s]]), but not arrays as a whole. This excludes a_combination as given
in 5. 12 because at the moment such a declaration occurs, y[s,3] has no meaning

f7 4 2. Vote from Hatematikmaskinnimdens nrbetsgmpp, Stockholm: 26 10.1959
_ "He ‘accept the proposal AB 5.12". A .

Toha3. Vote from Facit, Stockholm: o v,:za;ilo.'.lgss
e agree.” , SISt

7.4.4. ?oto from the ALGOL-group at Svenska Aeroplan AB: _ | 2.11.59.
"Wo agne A

2o

7°5. SYHBOLISM FOR LABELS AND SWITCHES AS QUTPUT PARAMETERS FOR PROCEDURES.
Discussion. Ref. AB 5.16..

»7;5.-1. Vote from Hatematikmaskinm#nndens Arbetsgrupp, Stockholm: 26.10.1959
"We accept with pleasure the proposal AB 5.16.2."

7.5.2. Vote fron Facit, Stockholm: 28.10.1959
"We agree.” L
TeS5e3e Comment from Siemens: 27.10.1959.

"Tn AB 5.16 it is asserted that the proposed change would greatly simplify
the work of the tremslator. We want to state that this is not in general tme, but
depends on the structure of the tramnslator.

We want to support, however, the idea of characterizing tye labels’ among
the procsdure parameters, because of the readsbility, which is increased when ome
can 1mmedia1:ely see from the heading, if the procedure has other exits as the
normal ‘one. Yet we do not find the proposed notation nice, but would insteed
recomuend the snggestion of Backus (Backus®' Paris report), according to th.ch
the possible labels are added in an extra parenthesis.”

7.5.4. Vote from the ALGOL-group at Sveuska Aeroplan AB:

"We do not agree." Cfr. AB 7.47.
.64 Commnt from H. Rutlshauser concerm.ng gl, 1@.1959

' THE mUIVAmeE DECLARATION(ed)Ref. AB 4.10.

the mtentlons of the proposer. It seems to me however.
If the equivalence-declaration serves to exchange a subroutine at a certain
place in a written ALGOL-program, then we have already a dévice for this:
‘Lét e chixs =t (y) be a procedure to be used in amother procedure XXX Bnch

E'ND m,
Here the main program using xxx has to define what exch actually is to be, g.g..

see

m(....., mocea() =t (Jo eedd =2 (heil) 5

'}"EO‘EEDUIE mocea (p) = (Q) ;

EM) mocca 3

If however only in the translated program a subroutine which is used there ig-
to be replaced by antther subroutine which also is already in machine notation, then
the description of the exchange is obviously not a matter of ALGOL, but rather some
kind of "asuxiliary J.nfomatz.on" Therefore I believe that the equivalence declara-
tion is not needed.”

-3-

77 Comment from H. Rutishauser :oncerning 21.10.1959.

ASSIGNMENT DECLARATION: CONSTANT (ed.) Ref. AB 4.7, 5.3.2.
"Agreemamnt, but also subscripted rariables should be possible inside the
castant declaration. General form:
CONSTANT BRRIN V s=H; Vi=HN; ., .o V=R [ND

vhere V may be a simple or subscripted variable. Cf course BIGIN and END may be
omitted of only one constant is delcarsd so. It is my feeling, that the constent
declaration should serve at the same time to provide storage allocation, if the
variables are subscripted. As to the qiestion 5.3.2, I see no syntactical contra-
diction in assigning new values to the constants, but this would render the trans.
lated progiam worthless."

7.8. tomment from Siemens concerning 27.1(5.1959

ASSIGNMENT DECLARATIONS, Ref. AB 5.3.2,

"We do not quite understand the qiestions. A declarstion is per;definition
independght of the rihning history of the program (agprocedw:e) in w&nieh it occurs.
"Oonstefit® in serise df the sssignment leclarabicn theftefore means "cohstant with
rospect to the running history of the program". Ths c%:\ses alluded to in the questions
should bé programmed by application of the assignment statement.”

7.9: Comtent frow H. Rutishauser concerning ' . 21.10.1959.
FUNCTION DECIARATION (ed.). Ref. AB 4.8.
" pgveam "‘anf".

7.10, Comment from H. Rutishauser concerning 21.10.1959
' PR HRADTHGS (ed.). Raf. AB 4.9.

HEQUIRE-declaration as follows:

Functions and procedures which are used inside the procedure but not defined

there (by & corresponding function- or procedurs-dscleration) should be listed
in the heading of the procedure by a special declaration:

Form: REQUIRE (I, I, I, sasepl)
The word-delimiter REGUIRE, followed by the list of the names (identifiers
I) of all these functions and procedures.

Purpose: The user of the program can immediataly see, which fimetions end
procedures are needed inside the procedure, and the translator may provide slamm
5&’ one of these is not fed into the machine togethar with the procedure requiring

eMe

It is not needed to list a procedure ar function declared inside the proce-
dure, or functions like sin, cos, abs,.. vhich are supposed to be permanently
available. For mst a fimction or procedure be listed which eppears as a parameter
of the procedure, because such a parameter mst be delivered by the next higher
procedure in the hierarchy (end mst be delcared or required there).”

l’-ﬁr.‘&

7.11.Queation from the ALBOL group et Regnecentralen concerning
PROCEDURES A5 THPUT PARAMETERS IOR PROCEDIIES

"The Ziirich report is not explicit an the point of exnctly how a procedure,
which is to be gntered as an irput peremater to amother procedure, should be spo-
cified. Should the compiete formal structwe, including the =:, be quoted, thus
for example:

A(a» B(P)‘:3 (o)) =t (6... e)’
where the heading of the declsrstion for A starte:

PRWEDURE A(xb Y('R)=3 (¢) 25) x? (u,v); -m

?ola.'Suggest;ion from the ALCOL grouw» st Regnecentralen concerning
EQUIVALERCE OF FUNCTIQONS.
"We agree with the HATILUFI SRI group ttat the word ‘equivalencs' is unfarhmate.
FPurther. altematzm.

subatitultion.®

7130 Quest:.m from the ALGOL cr"'oup &t Regnecntralen cuncerning
THE INTEGERS OCCURRIIG IN ARRAY DECLARATIONS .

"in an array declarstion the subscripl ranges are defined by 'lists of integers
separated by commas' (Zirich report, page £4, line 6 from sbove). It is not clear
whether these integers ave to ba understood us integers G, i.e. positive integers,
or whether negative integers are permitied ss well.®

Te ,..40 Remark from Jan V. Garm.ck conerning
THE OFBRATION OF THE F‘ORa-—bMTEI

A for-statemmt, e.go of the form
fori = a{l)o-1; £

wil) according to the Zirich report siways bs exconted at lemst once. If & s.nd b
are computed numbers and & = b, this clearly means thet Z shell not be executed
at 21l. Would it not be tebter if this was taken into consideration so ane would
net have to precede the ferrqtrt,mn'.xt by a test to see if @ > b and in {:ha.t case
skip the for-statement?

Telb. Comment from He Rutishmuser ccngerning 0 21.10.1959
THZ _OPERATION OF TUZ IOR-STATEMENT. (ed.)

"If the signs ¢f c-a and b ave differeant (in Fo*z v aa(hk‘ {ed.)), then the
iist alb)e is empty. {Mith an eupty 1ist 1, FOR V := 1; has the same opﬁratz.onal
effect as IF “alse.{} "

=B
7.16. Memorsndum from H. Rutishauser concerning
ARRAY-DECLARATIONS IN PROCEDURES.

Wt must be clear that the rules for Array-declerations in procedums*) a8
given in the ALGOL~report, are too resirictive and therefore would allow'only: the
most tmv:.al applications. In order to remove this difficully, the ALGOL-groups
at Zurich and Mainz heve spent considerable time in dlscuss:ing poss:.ble solut:i.cns
It Has fmmd that -

a) although it would remove the difficulties, it would be highly 1110g¢al to place
all parameter-dependent array-declarations (i.e. also those for varisbles
occurring only “inside" the pmcednre) into the the heading; therefore th.:.a
solutim mst be strongly rejected.

b) If we allow all may—de«*laratlm> in g procedure to depend on the mp..b»para»
n.ete:cs, this would remove the resiriction alsc. So far, however, this is not '

_-v ‘allowed, but all the same, the present writer.adopted this ngwft Tule" to
' dmscmbe some ezasmples.

In addition to those more or less syntactical rules, the present wr:.ter en=
countered seversl timss seriocus trouble when he tried to describe certain computa-
tions with ALGOL undsr the present rules. That this trouble is by no means confined
to “ambitious® examples may be shoun by the follwing ALGOL-program, which descri-
bes the generation and storing of the reciprocals of all integers from 1 ton
(whsre n is given from the keyboard into the machine). This rather modest problem,
even after adopticn of the "soft rule” mentioned above, could not be described
by less than & mein program, calling ir en artificial procedure VOID, which it-
self calls in en equally artificial procedure REZ: : C

keyboard (1) =: {n) 3) in routine
YOIl (n) =: {x}; FH) WREK) e
SPOP 5 '
PROCEDURE VOID (n) =: (x) ; ;
"7 BBGIN AHRAY (r {w 3 s \
VOID- REZ (n) = (x[]} ; , Msubroutine VOID
= 0 ; RETURN '
END vow :
PROCEDURE REZ (n) s {2
xR&.. (rl1:n 4)
] .
REZ : FOR k := 1{1)n ; r{kl = 1/ ; subroutine REZ
REPURN

END REZ 3
Ep

¥} that only the array-declaretions conzerning parameters may be dynamic, i.e. may
contaein expressions.
#¥) Phe subrouhine Ykgybhosrd \'3) =: {n)? brings s new L.wnbw from the keyboard into
the maochine; it must be wyvitéen clready in machine notstbi
“‘"’"} Procsdure VOID %wm only to shield the array r{ 7 a;r&mst the outside world
n which no vesbor r[} could exiet (bezsuse there is no corresponding erray-decla-
'fa‘m on, .
¥XH¥) keyborrd has me input pavemeters, VOID has no output peramebers; for this
reason the pesitions for the corresponding parmmeters have been filled by dwmay
varisbles. o e

-6-

In view of all these difficulties we finally came to the conclusion that in
order to remove the true source cf all the trouble, we should no longer hsitate
to adopt the only contradictionfree solution, namely the introduction of fully
dynamic array-declarauons according to the following definition:

An arra,y—declaratlon stends at the begimming (i.e. just after BEGIN IK) of the
compound statement Z._ for which i% is walid. It mey contain expressions
which depend on variafiles tc which no new value is assigned within Z ’
nor in the F(R-statement (if any) :mmedistsly preceding Z. .

w:.th this new definition, the example cited above may be desc,ribed as follows.

keyboard (1) =: (n) ;
REZ: BEGIN ARRAY Y (rli:])
FR k = 1(1)n ; r[k'j t=
STOP :
.‘IND REZ
' I can understand that this rroposal msy be a shock to the reader who supposed
ALGOL to be a well established language and just got used to it. Moreover I.am
fully aware that dynamic arrgy-declarations sre not essy to handle because they
not only allow te extend, but also to cancel gtorage reservations during compu-
tation. Therefore only by careful planning one can prevent such mishaps as too
early cancellation of storesge reservations or unnecessary repetition of storage
reservationg.

On the other hand it must be cleer that the new device is a quite natural
but very powerful extension of the previous rule which includes it as a special
case. Therefore the changeover might be mede ef any time without renderingpld pro-
grame obsclete, and those who would like could still mske programs according to the
old rule. In fact the changeover might be adopted in eteps, for this purpose the
present writer offers some reduced versions of the proposal:

N

g) The now rule applies only to the following cases:
Z_ is either a full program
or "the program pert” of a procedure, which follows after the heading.
This is exmctly the "soft rule" mentioned above; we have practically already
agreed upon this. ’ o

b} The.new rule applies only to compound statements which range from a given point
to the very end of the progrem. : '
This ie g true exlension of the present rules mnd allows already to write
the example given ahowe in the conclemsed form., On the other hand, the mle
b) would be still very easy to hanile since it allows to extend storage reser=
vatzous dynarmically but not bto cancel any more.

Some remerics must be made sbout the translators. Of course the nsw rule would
lead to more complicated AlGOlL~translsbors, mt the additional difficulties would
be rether modest. In & ceriain way, the placing of the array-declaration mbmt
of the compound statement would even simplify some parts of the translators.

It 45 en open question, if also the other declarztions (i.e. type declara-
ticns, function declarations, procedure declardta,ms) should be placnd at the

beginning of the program #

Sy

ToX7, Comment from H. Ruiishesussr concernirg 21.,10.1959
ARRAY-DECLARATIONS IN THE HI'ADING OF A JROGEDURE. Ref. AB 5.18.

"It is true, thet they are superflous in w st cases and may be omitied by
the tramsletor. Bovever they serwve, together wi'h the reguire-declsration pro-
posed above (AB 7.10), a very imporisut parpose: The hesding immediately shows
what is sctually going on in the procedure, otherwise the user of such & program
has to seerch for the information tlrough the w!ole description. In this connec—
tion it should not be forgotten that ALGOL is mct only & means for sutomatic pro-~
gramming, but also for exchanging krowledge in ‘the for of ALGOL~written numerical
processes, therefore readablility shculd not be reglected.

It has been mentioned that the seme pwrpose cam be reached by saying these
facts in a commenf-declaration. Thie is twue, hewever I think very low of any rule
which leeves it up to the producer cf the progrem whether he likes to obey it or -
not, Therefore it is my feeling thet the only wey to enforce this information
to be written into the beading is sz strict symbtrotical rule regardless vwhether the
translator ugses it or not.”

- 738, Comment from B, Rutishaussr concerning 21.10.1959
THE LISTS OCCURRING IN FCI~STATBMENIS (ed.). Ref. AB 4.1l.
"Agreemsent. This would lesd to the followinz new defimition:

FOR V := 1 s Where 1 is 3 lis®, whica is defined recursively as follows:
1 ~ a(b)e | wheres, b, ¢ are exprasaions not containing functions
LV -3
e 1,1 (= concatenition of twe lists).”
7.19. Comment from Siemens conc irning 27.10.1959

BOOLEAN EXPRESSIONS. Ref. AB 5.17.

- "It should be pointed out that he readabil ity of Boolean expressions with
round brackets or with square brackes o & gres: extent depends on the example
you choose. Consider for example the follcwing e pression:

(e[mn] = b[p} 2 Afi]) v (afinn] < BR])

compared with

[a[m,n] z b[p] > A[i]_g\/ [ZE&.n] < BELI }."

7.20. Suggestion from Facit, Stcckholm, concerning 28.10.1959

THE OPERATOR »€ ,

"Po avoid the chences to punch the letter X instesd of the symbnl X and the

trouble with such an error punch, we suggest to change the symbol of' mltiplication
form to an ssterisk #."

B _
7.2). THE ALPABET OF ASSIGNMENT TATEIENTS (ed.).

Proposal from K, Samelson.

"The alphabet from which assigoment statements are built up contsins the class
of lsbels and the class of quaniities which consists of the different classes of
symbols for numbers, variables with 0, 1, 2. ... subscripts, end functions with
1, 2, .s. arguments. Members of different classes are distinguishable by claess
characteristics alone, and any reference to a quantity or labe) must contain its
class characteristics. (Specifically, a single identifier always designates & va-
riable w:.th no subscripts.)

".7.22. Proposal from K. Semeléan concerning
THE STATUS OF DECLARATONS. (ed.)

nA declaratlax is a prefix to a statemnt (and not en independent entity) It
is valid for, and part of, the statement following it: if A is a declaratiom,
amd X a statemsnt, A,Z is a statement ard A is valid through = and 2.
slone. Conflicting declarations on different levels of a statement are errors.
(A 1abeled statement, when called by means ¢f the label, begins with the label;
declarations immediately preceding the label are mot part of the statement called).
For library procedures, modificttions of the above definition may be desirable,"

7.23. Proposal from K. Senelson concerning
SUBSCRIPT BOUNDS IN ARRAY DECLARATIONS (ed.).

"In all array declarations, subscript tounds may be arbitrary integer valued
expressions, An arrsy is considered ampty wlenever any of its dimensions (diffe-
rence between upper and lower bound of a sulsoript) is negative. "

T.24. Proposal from K. Samalson concerning
THE STATUS OF PROGRAMS (ed.).

"Supplementery: & program i3 e statement which has neither predecessor nor
successor."”

7.25. Proposal from K. Ssu:lson conceraing
IP~ AND ALTERNATIVZ STATEMENTS (ed.).
"Redefinition: (In the folluwing, B are Boolesn oxpressioms, Z_ statements.)
elternative statement if B: Z, else 7
with the following supplementery rales:

7.25.1. If Z. is empty, else may be omitted. This gives the cond:.tmnal statement
in the "single statement" form. '

—

7.25.2, Concatenation is permissible, that i3 Z. mey again be an alternative
statement. ;11.’_}31: Zl' else if B.: 2.’.2, else if ... , else

with the meaning of the alternat.ve statemen’ in its present form.

9=

7.25.3. Substitution of an alterstive statement for one of the Z. following a
condition is pemswble anhr by enclosing this statement in (statement) paren-

theses: ii'sz ,3_Degin if B, 11’ else ... , else Z:]end else if 32 Zz, eee

‘I'his wwld mplaee both tha present conditional and alternative statement.
The possibility of entering, in the alternstive, expressions E in place of ‘the
stateménts ¥, should be discussed. This is J.HcCarthy's “conditional expression”
and a. possible alternative to logicel mltipliers which we shall have to deal with
anyvay. The other altemative i3 explicit iantroduction of the eharacteristie func-
tions of pw:edicatea.

; 7.25. ~ Proposal from K. Samelson concerning
L THE CHARACT3R OF ‘FOR‘.(ed.).

"Rmme finally the statemant character of the for which like the if 13 a
subard:l.nate clause,"

7.‘?]: Proposal from K. Samelsan ccacerning
THE IDENTITY OF °*STOP' AND 'RETURN' (ed.).

"Sto;g and return have basically the eame function. The difference is clear
from context. Therefore a singls symbol shcild be used (which should better not
be stop since this leads to errameous inter pretations).*

7;.28: : Commentftrom the Buropean members of the Paris sub-comttee(E.W.
Dijkatra, V.Heise, K. Samelsan) concerning the sub-committee report. .- 27.10.195¢

"At the introduction of our report in Paris it was stated that the report
was prepered in a hurry, and heace in no way complete and free of errors. After
all, we still believe that this list of itews to be remembered was better than
nothing. - ¥e add these remarks, particularly to clarify our opinion an ‘some: of
the comments in ABS.n .

7.28.1. DUML STATEUENT. Ref. AB 5.1. -
"The extra semicolon in our report ie a2 pure orror. Ve simply mmted to re=
comend Rut:.shausers proposal A3 F.4.2." :

o 70% 2. FUNC'I.'ION-‘.: Ii PROCEWRBS Ref. AB 409 and 4.10, T :

"fhese two items form en eitity &s in the original report p. 2 (There is.

of course no need for an eguivalence cCeclaration, if the function is an input

parameter). What is said on funstions in this item should apply to procedures
as well,”

7.28.3. DOMAIN OF VALIDITY 703 EQUIVAIENCE DECLARATIONS. Ref. AB 5.5.2.’ '

"Our opinion is that the ejuivalence dzclarstion should be valid for all the
procedures defined in the proceiure declaration referred to by the equivalence
declaration." ‘

TeBe4e AUXILIARY INPORMATIOR. Ref. AB 5.8. L
‘"In our report was s stated: -This information is in no way co:mected w:-.th the
reference language.” This dim ramark should be interpreted in the following way.
a) The discussion of suxiliary informstion is beyond the scope of the Americen

=10~

and B.zropean ALGOL committees. Tre question ¢f this information should be seitled
independently by the differeunt herdware groups, b) It should not be allowed to
mix the auxilisry inforwation and the AIGOL rrogram itself. The auxiliary informa-
tion should bs givem to the tramslator as a commected whole, for instance before
the translation of the ALGOL program.” ,

7.29.. .Sueaastian from Siemens coucemine- -.‘,27_.10.1959
-mwmdrmmmmemmsmmamdnpe

in acecordance with AB 2.2.1. We suggest the following notation of the "fom state-
nent detcninins sn arithmetic progression: .

‘fu’ v = E.E'g

i.e. tomplmﬂnpamthesesorthemfmueembvmtroﬁus Inthu
nymmidsﬂnnn-knmdifdmltyincmwhmtbmsimmm
ﬂmetima. -

7.39- f - Suggestion from Siemans concerning 21.10.1959
' PROCEDURES IN GERERAL, -

*Procedures in the form of tie Zirich report are closed units, vhoeeonly
connexion with the extermal program is via the input emd output parameters. This
structure is well suited for procsdures with library character. It oftem occurs,
however, that cne vants to divide a program in blocks for different reasms,
which have nothing to do with the use of or production of library procedures.
These reasons might pay regard to the actual machine (for instace, sdaptation
to different levels of memory; core memory, drum memory etc.), but thy might
also be machine-independent (for instance, coasidering the clearness of
the ease of testing etc.).

In such cases the repeated transferring of information by each procedure call
is rather cumbersome.

¥e therefore suggaest that a mtypeofprooednrebeintroduced, which differs
from the original type in that it is not necessary by each call to transfer in~
formation about the variables, funictions etc. to be used in and produced by the
procedures.

A step in this direction is already takei: in the suggestion of the Paris
sub-committee (cfr. AB 4.9 and 4.10),

e do not want to make a detiiled proposal at this moment, but we should like
to draw the attention to this point, and to cill upon the participants in the
coming AILGOL conferemce to cansider it thorouzhly.

Questions in this connezion are for instaince:

Should this proposed new typ: of proceduves be close to the original type
with respect to formal siructure, or not? Shoild all varisbles, functions etc.
be extemal, or should it be poss: .ble to distinguish in some wsy between extermal
and internal ones?

Finally we want to express aus our opinioa that this podnt is an important one.
If the problem is not salved, the consequence will be that each will make his own
type of blocks by inserting "emxi.iary information™ betuveen the statements and
declarations of the AILGOL program itself (efr, AB 5.8)."

~3}~

T7.31. Suggestionfrom A, van Yijngasrden and E.¥, Dijkstra concerning
'] A DEC ON.

"Replace the begin of chaptor 5, Declaratioms, by someihing equivalsnt to
Declarations serve to state certain facts about entities referred to within the
program. They have no operational meaning. Tiey partain to that part of the text
which follows the declaration and which may e ended by a contradictory declaration.
Their effect is not altersble by the running history of the program. Compatible
declarations about the same entiiies - can be given by writing shead of one such
declaration the declarators of the other declaratioms.

The meaning af "compatible declarationms" should specified, €.g.
. array intoger (x[1:3])
tells that there is an array of integers x[1], xf2], z[3].
| complex integer ()

tells that there is a complex muber z, resl and imaginary part of which are
integers (cfr. AB 7.34 (or rather AB 7.35 - ? Editor's note)).”

7.32. Comment from A. van Wijngsarden and E.W. Dijkstra concerning
THE USE OF HAMES (ede).

"Nemes '(identifiers, mmbers) should not be used in the same lavel (cfr AB 7.335)
for different purposes, e.g. for a variable tnd a label. It has been showmn (cfr.
e.g. Bratman, CACHM, 2, 8(1959), p.4) that unexpected ambiguities may arise under
special circumstances and there cdoes not seen to be any serious need for multiple
use of the same name. In particuiar integers should not be used as labels. Other
difficulties are for instance for i = a(b)c, and for i = a(b)(d)ec.¥

7.53. Suggestion from A. Ven Wijngaarden and E.¥. Dijkstra concerning
| LEVEL DECLARATIONS OLD, NEW,

. "In the begin of a procedure - the heading ~ sutometically a new level of
nomenclature is introduced that is left for good at the end in virtue of thdsen-
tence: "All idemtifiers and all labels contained in the procedure have identity
only within the procedure, and have no relationship to idemtical identifiers or
labels outside the procedure, etc.”. This is useful and a muisance at the same
time (cfr. also H. Bratman, CACH, 2, 8(1959), p.4). Apart from their suggestion
(1) about the procedure statement, with which we agree, we suggest that the level
declaration ‘

new (LI, ...)

has the effect that, the nemed entities have no relationship to identically named
entities before in the following text, until the level declaration

o (L1, ...)

which sttributes to the entities named herejn the meaning that they had before.
These level declarations msy be nosted snd form the only way to introduce a new
meaning to a name. In particular :in a procedure to be compiled along with the main
program all variables that should have no relationship .. etc. should be declared
new before they have appeared and declared o0ld before the end. ;

These declarations do not ¢nlly solve the problem of having "old" and "new"
variables alongside in a procedure, but are also extremely useful in sn ordinary

program. It should be noted that after new(x) the new x is fully independent of
the old x and, therefore, type declsrations, if necessary, have to be given anew.
On the other hand after gld(x) the type declarations of the old x are still valid.”

7.34. Suggestion from A. van Vijngsarden and E.W. Dijkstra concerning
4 TYPE DECLARATION DUNMY AND THE FUNCTION DECLARATION. '

7.34.1. "According to the Zlrich report (cfr. Xook and Bratmsn, CACH 2, 8(1959) Pe
3eq) it is impossible to apply type declarations to the input variables of a func-
tion, which are interpreted by the function declaration automatically as formal
variasbles (dummies). We suggest to drop this interpretation as formal variables
and to .introduce the type declaration dummy. This permits among other things. -
to descern between different dumnies and aprly other declarations to them.

Example: dumy integer (e,d) ...
7.31.2 ' AT[e,d] = Ald,e] ...

’ def‘mes ‘the transpose of a matrix. In here, and this is the next suggestion. the
misleading symbol := in the function declarstion is replaced by the non-operational
symbol =. This permits moreover to declare & function which does not depend on an
input parameter, without making it necessary to follow the function idengifier
by empty parentheses, in other words the introduction of abbreviations is auto-
matically included in the function declaratmno
Exampie. '

r=s8qrt (x5x+ yxy);
pi = 3.14

If one replaces in these declarations the symbol = (read “"stands for") by :=
(read "is replaced by"), it turns into an assignment stetement with a completely
different meaning.

These suggestions are compatible with the suggestion made elsewhere to :.ntro-

duce the declaration function which seems to be in agrcement with the tendency
in Algol to start by saying something about the overall character of what follows
(cfr. for, if, etec.) although logzically these remarks can be dispensed with at
the cost of more difficult interpretation.”

T.35, Suggestion from A. van ¥ijngaarden snd E.W. Dijkstra concerning
DECLARATIONS COMPLEX, VECTOR, HATRIX, LIST, BIC.

"It should be pessible to daclare entities to be other things than real va-
rigbles, e.g. complex numbers, voctors, matrices, lists (sets) of quantities, A
quantity defined by such a declaration may enjoy well defined properties which
make it possible to apply operators like +,-,%, etc. "in the conventional meening",

i.8. in the meaning that is convantionel for such types of quantities.
B.g. if g,b,c are declared Lo be vecltors by a declaration like

yvector (a,b,c, [l,n])
where the corresponding identifi:rs occur in an arragy declaration as

array (asa,c, [1,10])
then the unambiguous ass:.gnment 3tatement

c :-_—. a+b

should be permitted. Specificatins about what is the "conventional meaning® (see .
Zifrich Leport, 3,v) of the operations on suca quantities must be defined in deteil,
So in the case of a list, wiich we addel to the list of operationael declarations

] T

on purpese, ihe conceivable opcraiioms are aot 3¢ cbviously conanscled to symbols
a8 4,-,X, etc. liowever, addititn of an elarsnt fo a 1list, of a list to a list,
removal of an elewent from a list ave quits useful operations vhich may be repre-
sented hy + and -, '

© The identifier of a 1is$ could ccour «.g. in the definiticn of the range
of a for statoment, e.g.

for i := L

where L hag been declared to be a list, the length end the slewsats of which may
be charged by the program.

Swer. without giving a fully worked oui list of definitions we want to stress
the importance of being able ¢ use well do fined ccmmouly used mathemstical cone
cepts. A veclor is esasntially more than ar. emanevaliou of ita elements, e.Z.
its length need not be idembicsl o thalt siggesiad bty ine array declaration. Of
course, we are aware thal some of these opiraticns hinted af cen be written down
in Algel as i stands by using a propsr sel of pirossingres, tul there ssems no regs
son %o use s clumsy notation wisre a4 perfect one ds in dailiy use,”

A

7.36. = Proposal for discussion fTrom H. Boltenbruch cuncerning 26,110,195

PARAMETSRS IN PROCEDUI E3. ‘Ref, Zirich rep. pag. 56, line

7.36,1. "Names of those progedures anc furctions defined outside the prggg@ es.cz.w

need not be given as input parzmeters.
tnhtries in the parsmeter list should le restrictad to variables, whereas these
otherwise defined procedures ard funchions have fixed meaning,

7.36.2, If a procedure P is defined within anciher procedure or progrem P 1,
identifiers of P may be identical with idertifiers of P 1. By this cenvention we
would have the same possibilitiss for procedures as we have for functions, namely
the "hiddsn parameters”., The practical adventages ara obvious.

The following difficulties arise:
a) How can we d:a.sting.xish "auzxiliary tarmblas" (these of course bear no

ralationship with 21l variables aven of the sems name outside P) from "hidden
parameters”., {The problem does not arise with hidden parame‘l'e“s in functions),

b) Among the awriliary vaxiables we hzvu two classes:

bl) These which "loose identity" after lesving the procedure

b2) Those which retain theil mesping zfter leaving the procedurs (not for use
outgide the procsdure, but for revse after reenberins the procadure),

liow can we distinguish betwoan these two oa saea?

it is of course not absolubsly necessery tc distinguish betwsen the two types
‘of suxilisry varisbles; bui thea we either must frealt 211 avzxiliary variables
as to be of the second kind, or we must forbid those of the second kind.

Difficultiss s and b could Le resolved by declarations "auxiliary 1" and
"maziliary 2", Thess declarsticis would also help ths translator.”

i
T7.37. Proposal for diex ssion from H. Bottembruch concerning 26.10.1959

DECLARATIONS AND DIFFER! RCE OF STATIC ARD TYRAMLC STATEIEN
(also Comment to Propostl AB 7.22 . of K. Sanelson).

7.37T.1. "It may be dangerous to make declexrations a prefix to a statement. The basic
facilities which are provided by the prososed modifications ere, however, also
resclved by the following proposa. Give the declarasiicns g dynamic m%
is e.g. & declaration grrey (afl:: 0]} is valid until anotier declaration \say)
arrey (af1:12]) is encountered. This wo:ld be particnlar'y advantageous with de-
clarations s single precision or dotble pracision. (The lact: of dynamic declarat:.ons
of th:.s.s ¥ind has been stressed by some piople on the Paric Conference). It might
be diffi cult for the transletor % provile for approyriste storage space for: "dynsmic
arveys" without statements of the kind cipty (e [... |) (nemning that arrayal...
is no longerused). o . AL

’efe_ should, however, proviie a possibility to declire & statement to be valid
“ & complete program (this only to ensble the {renslator to comstruct
more ¢fficient programs). These sfatemen:s may be the old Qeclarations, or they

' tatements like "7 := 3.141". This could be done ly a prefix Constant.”

' 7 «38. Saggeatz.on from tla ALGOL greup at Regnecentralen conceming

PROGRAF HEADI IGS. 7 15.10,1958.

”It is suggeeted that comple‘t@ AIRO, programs should be provided with & hea-
ding, somewhat similar to a procedure heding. Ammg the vses of such a heading
the following might be mentioned:

T.58. 1. If conventions conceraing * wxilisry informsfion® similar to those
sa,ageSoed in AB 5.8 are sdopbed, iis hemling might provide ap explicit reference
to the particvlar system of such iaformsiion actually employed in the program.
Thas for instance "x DASK 2" might indicite that the suxilisry information refers
to & perticuler trenslsteor, DASK .

To3B,2. Built-in functions {sin, co 03y a.bs, etec.) empioyed in the prcgram might
be entsTed (cfr. 4B 7.39).

7.38.3. A program designatior, refe Ting ts) en eatrarce lebel into the program
migh be specified.

E‘f:ampl@ :.

PROGAAN 143 Part B; z DASK 2; FUCT. QN sbs(), sz.g‘x(), entiex(}, sqr‘&()s
BEGIN

'943 Part B ...

ceces END 143 Part B3

iddendums Cfp. A8 T.42,

: -15-
7.39. Comments from the ALGIL grovp et legnecentralen concerning

THE PLACE OF LIBRARY PUNCTIONS WIHIN THE HISRARCHY OF PROCEDURES,

"One of the points raised by fFhrling ‘AB 5.13.3) may be reformilated thus:
What is: the place of the built-in library -unctions (abs(), sin (), etc.) within
a program containing several stbordinate procedures? To this questiom there are
essentially two possible answexs: (1) The library functions are completely equiva-
Jent to functions defined in tle program, execept for the feature that their decla-
ration is implied. (2) Library functions are quite exceptional. let us. consider
these two pogsibilities separalely. .

7.39.1. Iibrary functions similar to other functions: '
Implied declarstion occurring in one place only.
In this case the only gquestion is where the implied declarastion for the 1ibra-
Xy functiona should be understcod to be pliced. There are two reasonable answerS°
7039 1.). In the main program.
.39.1.2. Outside the mair program, tle main program being treated as a ‘unique

' kind of procedwe.

Tha differenee between these two possibilities is the following: In case
7. 39-1 1 it is impossible to redefine a litrary function in the main program,
since" thj.s would be equivalent to trying t¢ introduce two differemt declarations
for the same function identifier, which clearly is a grammatical error. In case
7.39:1.2 such a redefinition should be made possible, either by the convention that
a declaration of one of the library functicns auntomatically should delete the
implied. declaration, or through & specific PROGRAM HEADING, cfr. AB 7.38.

‘Where the treatment of library functicas inside procedures is concemed, both
of these interpretations lead to the same conclusion:

a) The library functions mast be enterad through the procedure heading, if
they are needed within a procedire {either as an input perameter or through a
declaration (REQUIRE, cfr. AB 7.10).

b} If a librexy funcition i3 not enterel from the main program, the correspon~
ding identifier may be used for some other function within the procedure.

To39.2. Library fmctions as axceptions:
Implied declaration occurm.ng in several places.

In th:.s case there is cousiderable freadom for choice. Consider the following
schemes:

7:39.2.1. library functions as universil, unredefinables. This would corre-
spond to the declarstions for tiie library fmetions being repested inside all pro- -
cedures, and then considering them as ordinary functions,

T1.39.2.2. Libraxry functions as umiversil, but freely redefinable entit:ws.
The declarations for the librer;r functions would be understood to be repeated inside
each procedure, unless the funciions in question were defined differently, in which
cage the new function declaratiim would be ‘mderstood to have the double effect of
deleting the implied declaration and introdicing the new function. This would hold
cenly et the seme level, and not inside proc:dures defiined in this level. .

¥Ye ourselves Hend to prefe: the snswer 7.39.1.2, i.e. the interpretation that
library functions sre similar to oidinary fmctions defined at a higher level
than the main program, and that all library functions used inside a procedure must
be declared in the heading. As 'ar as we can see this sgrees with Ehrling¥ propossl

»3 b

A8 5.13%.3 groept {or the point that dirling wishes to leave oul the decisrmtion
in fthe heading. e rewvosnize, in principle, the need for Zhrling's lbrary declas
ration, but we fuvel that in practise the very complicated procedure hierarchies
will not often occur, and woull pref'sr avoiding lo complicate the langusgce by
Jeaving it out, '

7.32.3. Recamendations.
7.39.3.1. Buiit-in librery functions zhould be trested as like other functicms -
as posaible. '
7.39.3.2,. They should be uoted in th: hesding of the procedures in which
Jihey are used.
7,335,759, They should be entered into the mmin -rogram through a specific
heading to the whole program (ofr. AR 7.38}."

\

7:40. Gommest from the ALOL group a! Regnecentralem concerning
FULLY DYNAMIC ARRAY-DECIAIATIONS, Ref. AB 7.16. 2.11.1959,

"lg are not copvinced by the arguments used by H. Rutishauser. First of azll
the program of the first example glven does not seem to do its work properly, since
the arrsy r{] will not be available in the main progrsm after the procedure sta-
tement VOID (n)=:(x). Again, in the second zample there must cleerly exist an
upper bound to the permissible values of n. This is not evident anywhere in the
program. However, this upper bownd to the s.2e of any array appears to us to be
a very important part of the prublenm. :

If we understand Rutishausar correctly the intention is that different arrays
should be agllowed to share the same storage locations, both in procedures and in
the main program {this in spite of the title of Rutishausers memorandum, which
might suggest that only procedwres are invo wved). Where this problem is concerned
however, it is our feeling that no matter how the facilities of the slgorithmic
lengusge are arranged, the utilization of the available storage space will always
finally rest with the progrommer. In this view we do not seem to disagree with
Rutisbauser, who specifically siates "that dynawie array declarations are not
eeay to handle only by careful planning ...". On the other hand, with the
facilities already incorporated in the ALGOL of the Zirich report this admini-
gtration is not a difficult matier., The foll.owing example shows how it may be
done In g simple case, similar {o that considered by Rutishauser. A single srray
of fixed sizs is usad to accomoiate two dift'erent entities, vhich are known before-
hend not to require more than a fixed number of compoments in total, while ths
distribution of the sborage space smong the fwo entities may be changed dynamically.
The problem is this: Two number:s n andzm arezg:wen rsxm'ag:a;!.ll:,rv It is desired to store
wveetors 1/1, /2, ... Yo aé¢ 1/15, 1/i5, ... 1/m°. Altogether 100 locations
are gvailebls for the purpose. Irogrea; :

ARRAY (a{1:100]);

keyboard (1} =: (n); keyborzd (1) =: (&);

if (n+ m > 100); BHGIN print ('fooz*); STOP END ;

FR & = 1{l)n; alid = 1/1;

FOR i = 1{1)m; afiend == V/if2d ; £TOP ;

From the practissl point of view very l1ittle seems o be gained by special
convantions, which sllow one srrsy to grow ¢t the expense of smether. In fact,
problems in whick this would be useful sre rare., Ordinarily ell arrays in a problem
tend to grovw or shrink in egusl proportions.

Thue, as far as we can see the fully dynemic errey declarations will be 4iffi-

17~

cult to use, difficult to trenslate, afjeill not solve the real problem at stele.
We therefore recommend: stick to the Zirich ALGOL at this point.”

Memorandum from F.L, Bauer concerning
SOME PROPOSALS DISCUSSED IN THS USA.

7.41. USE OF DELIMITERS IN FOR- AND IF- STATEMENTS.
"%t is to use morv distinguished delimiters in the reference lan-
guage (this oot exclude, that for some of the delimiters the same hardware

symbol is used), _
7.41.1. Now if B then 2. . instesd of ifB; %

7.41.2. Now % '{:Zm:igogl %-;_'%E?ams%l E?%g;?c_zz

7.41.3. Concerning alternative statement, sce SAMELSON (AB 7.25).

(Note, that the word delimiters are used in order to indicate the structure of the
proposal, their choice is seconcary).

A corresponding change in the syntactical structure (now 'if-prefix', ‘fore
prefix'), nee SAMEISON (AB 7.26., removes a"so some incomsistencies.'

7.42. THE SO-CALIED 'END' OF A SO-CALLED ‘PROGRAM!

"program is a (compound) statement (cfy. also Samelson, AB 7.24. Editors note):
it starts with begin and ends with end. A sequence of compuund statements, without
being a compound statement itself, is to be considered as a set of independent
programs.

This gives sufficient information for the translator in order to tramnslate
end to start camputation. ,

A library program is a procedure declaration. This gives sufficient infor-
mation for the translator in order to translate and to ‘print out' the library
in tramslated code. "

7.43. ADDENDUM TO PROCEDURE DECLARATION,

*"If an input variable in a procedure declaration does not appear also at the
output side, its (numerical) valaes are unchanged after leaving the procedure

(it is ‘*saved'). Implementations for the translator are obvious. "
(Editor's note: cfr. AB 3.7).

7.44. INTERMEDIATE EXIT IN PROCEDURES.

“Intermediate exit of a pro:eduge, that means re-entering a;procedm:e as it
was left, can always be done be zpp::/'\priate (3ub-)progedure paramsters,”

~18-

7045, NON-SYNONYMOUS ZXPRESSIONS IN (NUMERICAL) ARITHMRTIC.

“In those types of arithmetic, where the numbers possibly are subject to
rounding, using the associative or distributive law does not give synonyma. How~
ever, the strict commtative lew for a pair of operands gives synonymous expmessiom.
Example: Synonymous ave (asB)+c, ci(ast), (bia)ic, c+(bia).

Fot synonymous are (asb)ie, at(birc), (ec+chib.

7.46. EXTENSIONS TO STRING-HANDIING OPERATIONS.

""Some people feel, that ALGOL, suprlemented by some siring-handling opersiions,
is well adapted to so-called data processing (including the description of a tra.ns—-
lator). Several proposals have beun made in the USA."

Te47. Comment from the ALGOL--group at Svenske Aeroplsn AB comcerning

SYMBOLISM FOR LABELS AND SWT,)CHES A5 OUTPUT PARAMETERS FOR PROCEDURES 30.10.59.
’ Ref. AB 509049 5.15; 5 16 and 7050

"Ye are not in favor of J.ntrnducing a new symbolism for labels and switches
in procedure statements and declarations. To us it seems better to sestrict the
use of identifiers in the procedwe heading when denoting varisbles on the ane
hand and designationsl expressions: on th2 other. This means that among the input-
end outpuitparsmeters in the proceiure heading a simple variable may not have the
same identifier as a laebel, and ar. errasy with one subscript may not have the same
identifier as a switch varieble. (n the >ther hand this could be permitted for
rrocedure statements vhere the pocition >f the parameter in the list of input-
and outputparamsters defines its functica.”

7.48. Comment from the ALGOL-group 1% S‘vens’ca Aeroplan AB conceming

ASSIGNMENT DECLAF ATION: | COII?}: 25 r’uef. AB 5,3.,2 and . 2.11.59

1.7, 7.8.
#Tt should not be permitted to chanze the value of a com;tant declared varisabls.

I the value of the constant is clenged (dynamically and it then has to be reset,
the effect of the constant assignrent woild be the same as the ordinary assignment
statement V i= N (N number) which then could be used.”

7-49. CHANGE OF REPRESENTATICI:

Siemens and Halske AG, Minchen, Germiny, will from now on be zwepresenf;ed by
W. Heise, formerly of Regnecentralen.

7,50, Hote from the editor:
Participa nts at the Paris Corferencs (cfr. AB 6) are requested to bring

their own copies of the ALGOL BULLITIN, since only a few spare copies are avai-
lable,

Further notes on new mewbers vill be brought in the next issue.

~19~

CLASSIFIED INDEX (@ SUGGESTIQNS AND DISCUSSION CONCERNING
TIE AIGOL LANGUAGR
APPRARING WITHIN AB 1 - 7.

The main classification corresponds closely to the Ziirich report. Hardware questioms
gre omitted. Some items appear in several plsces.

2. BASIC SYMBOLS.
Use ¥* for multiplication (Facit) 7.20.
Now delimiters in for- and if- (Bamer) 7.41.
Munerical constants.

Permenent identifiers for 7C and e (SAAB, Heise) 2.6, Discussion 3.3, 4.4.
Constant coefficients for power series (SA/B) 2.7

Identifiers for varisbles, and functions
Does bracket structure identify? (mrg 4.4, Yos! fmtunauaer) 5.9.5.
(Garwick) 5.9.1.

Suggestion for grouping of entities (Regnecentralemn) 5.9.4.
Fumber of subscripts (arrays) end variables (functions) identifies (Samelsom) 7.21.
lgentifier alone identifies (v;n ¥imngaarden, Dijkstra) 7.32.

3. iv) FUNZTIONS. '
Enter librery functions thbough headings! (Regnecentralem) 7.39.

3. v) ARITUMETIC EXPRESSIONS,
Non-synonymous expressions zBanm') T+45.

3. vi) BOOLEAN EX7RESSIGNS.

Rule for precedence of log. :fu'efmtors zl’aris sub.com.) 4.12, 70, wait nﬁ go‘e;!

Gemeralization of log. operatiois (Garwick) 4.16. Critieicm (Rutishamser) 5.1l.
Use [] around avitimetic relatims (Regneceatralen) 5.17. Criticiem (Siemens) 7.19.

4. STATEXWNTS,
statement.
Need for (Bring, @brling) 2.4.
Rutishansers suggestim: 5.4.2.
Paris subecom. suggestion 4.5.2.
Agreemant 5.1, '
Paris sub-com. recommends Rutishausers suggrstion 7.28.1.

4. 1) ASSIGN{ENT STAPEMENTS.
Yhat happens to a:= b/c; integze: (a); ~ ? (Jaur) 4.15.
Angwer: round-off (Ihztt'ahmxser% 5.10. _
The alphabet of assignment statoments (Samelson) 7.21.

. 4, iii) IF. STATEIENT,
Redefinition (Samelson) 7.25.

4. iv) FOR-TATEIENT. ,
Allow E(E)E,E,E,E(Z)E ... (Parisn sud-com) 4.11. Support (Rutishauser) 7.18.
Iet a(1)b, b<a cause a skip (Garwick) 7.14, (Eutishauser) 7.15.
Remove statement character (Samclson) 7.26.
New delimiters (Bauer) 7.41.

«20=

4. v) ALTSREATIVE STATSHTNTS.
Redefinition (Samelson} 7.25.

4. vii) ST0P STATEMENTS.
Allow dynsmic succession (Bring, Enrling, Heise) 2.3.
Special label for stop (Rutishsuser) %.2.1. ‘nswer (Heise) 3.2.1.1.
Not in favour of dynemic succ. (Bawer, Samelson) %.2.2.

Agreement in favour of dynamic succession 4.3.
Replace by "RESTURN" ?Samelson T-27.

4. viii) RETURN STATEHENES.
Similarity with YSTOP" (Samelson) 7.21.

' 4. ix) PROCEDURE STATEMERTS,
Only output parameters iy change (Naur) 3.7, (Bsuer) 7.43.
May input and output peremeters be ideatical?(Regnecentralen) 3.7.
Why are switches as output parameters not permitted? (Regnecentralen) 5.15.
Use special symbolism for labels and switches as cutput perameters (Regnecentralem) 5.16.2
Discussion (Siemens) 7.5, (SAAB) 7.47.
What formalism should be used for procedures as input parameters (Regnecentralen) 7.11.

5. DECLARATIONS.
Status of declarations.
Allow dynemic array-declarations (Rutisheuser) 7.16.
Declarations as prefixes to statements (Somelson) 7.22.
Declarations opzrative for following program évan ¥ijngaarden) Dijkstra) 7.31,
Bottenbl‘uCh) 7o37- ’
“urpatible declarations (ven Wijngaardan, Dijkstra) 7.31.
$uiek to Zitrich ALGOL! (Regnecentralem) 7.40.

Constant-dec tion,
toposal (Peris sub-com.) 4.7.

“1vr @ ‘constant’ chage? (Regnecentralen) 5.3. Dissussion 7.7, 7.8, T,48.
Dorzise definition (Rutisbemser) 7.7.

jeugth of procedure declaration (Ehrling) 3.6.

ivalence declaratiom.
Proposal \Paris sub-com.) 4.10 '
Other designations: Coordinstion, transformation, identification, substitutiom
(mtlufterl) 5.6.1 (Regaecentralen) 7.12.
Operational meaning in mlti-identified procedure? (Reguecentralem) 5.6.2.
Operates for all proc. within same declaration (Paris sub-com.) 7.28.3.
Is not needed (Rutishauser) 7.6.

01d, new, declaration {van Wijngsarden, Dijkstra) 7.33.
Empty declaration (Bottenbruch) 7.37.1.

Iibrary declaration (Ebrling) 5.13.3.

Auxiliary deflsrations (Bottenbruch) 7.36.2.

S. i) TYPS DECLARATIONS.
Dummy (ven Wijugearden, Dijkstra) 7.34.1.

=2l

: 5. ii) ARRAY DE(CLARATICHS.
Variable size arrsys (Bring, Zhrling) 2.5.1
Subscripts are constants (Naur) 2.5.3.
Hegative subscripts permitted? (Rsgnecentralen) 7.13.
Allow expressions in subscript bounds (Samelson) 7.23.
Introduce fully dynamic arrsy declarations (iutistamser) 7.16.

5.iv) FUNCTION IZCLARATIOHS. .
Hrite: 'FUNCTION' (Paris sub-com.) 4.E. Approval (Heilufterl) 5.4, (Rutishauser) 7.9.
Use =, not := (van Wijngsarden, Dijksira) 7.34.2. '

5. vi) PROCEDURE DECIARATIONS,

Fundsmental properties. : .
Only varisbles, no functions, through heeding (Bottembruch) 7.36.1.
Permit hidden parsmeters (Bottembruch) 7.36.2
0ld, new, declarations (ven Wijngaarden, Dijkstra) 7.33.

Intermediste exits (Bamer) 7.44.

Array declerations. ’
Why are they there? (Bring, Ehrling) 2.5.2, 3.5, (Regnecentralen) 5.18.
To help reading (Rutisheuser) 7.17.

Restrict permissible parametersin bounis! (Regnecentralen) 5.12. Discussiom 7.4.

Functions end progeduvres entered hesding,

Proposel (Paris sub-com.) 4.9. Approvel (imilufterl) 5.5.
Use word "REQUIRE" (Rutishauser) 7.10.
Should hold for procedures elso (Paris sub-com.) 7.28,2.

ITuilt~in 1ibr functions.
iibrary declaration %Emrling) 5.13.3.

Dnter all functions through hesding (Ragnecentralea) 7.39.

Farmalism for procedurses as input paraseters? (Regaecentralen) 7.11.

INPUT-OUTPUT.
IHFUP, OUTFUT, FORMAT (Paris sub-com.) 4.6.

AUXILIARY INFORMATION.
Idea (Parts sub-com.) 4.13. Purther exslanstion (Paris subcom.) 7.28.4.
Suggestion on effect, form snd symbol (Regnecentralem) 5.8. Approval (Matematil
Philosophy (Samelson) 7.3.3. L :l‘askinn.), {Pacit), (SAAB) T.3.

PROGRAKS. _
The uses of a program beading (Regnecentralem) 7.33,
Programs as statements (Samelson) 7.24 (Bamer) 7.42,

IGNS OF FUNDAMNTA', OPERATICHS. |
Generalize logical operations (Carwick! 4.16. Crisiciem (Butisheuser) 5.11.
Include vector— matrix- ete. arithmetice (ven Wijngasardem, Dijkstra) 7.35.

Sxtension to string-handling (Bamer) 7.46,

THE NEED FOR A NEW TYPE OF PROGRAM SECTION (Siemems) 7.30.

